[en] USING BODY SENSOR NETWORKS AND HUMAN ACTIVITY RECOGNITION CLASSIFIERS TO ENHANCE THE ASSESSMENT OF FORM AND EXECUTION QUALITY IN FUNCTIONAL TRAINING
Ano de defesa: | 2020 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50802&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50802&idi=2 http://doi.org/10.17771/PUCRio.acad.50802 |
Resumo: | [pt] Dores no pé e joelho estão relacionadas com patologias ortopédicas e lesões nos membros inferiores. Desde a corrida de rua até o treinamento funcional CrossFit, estas dores e lesões estão correlacionadas com a distribuição iregular da pressão plantar e o posicionamento inadequado do joelho durante a prática física de longo prazo, e podem levar a lesões ortopédicas graves se o padrão de movimento não for corrigido. Portanto, o monitoramento da distribuição da pressão plantar do pé e das características espaciais e temporais das irregularidades no posicionamento dos pés e joelhos são de extrema importância para a prevenção de lesões. Este trabalho propõe uma plataforma, composta de uma rede de sensores vestíveis e um classificador de Reconhecimento de Atividade Humana (HAR), para fornecer feedback em tempo real de exercícios funcionais, visando auxiliar educadores físicos a reduzir a probabilidade de lesões durante o treinamento. Realizamos um experimento com 12 voluntários diversos para construir um classificador HAR com aproximadamente de 87 porcento de precisão geral na classificação, e um segundo experimento para validar nosso modelo de avaliação física. Por fim, realizamos uma entrevista semi estruturada para avaliar questões de usabilidade e experiência do usuário da plataforma proposta.Visando uma pesquisa replicável, fornecemos informações completas sobre o hardware e o código fonte do sistema, e disponibilizamos o conjunto de dados do experimento. |