Aprendizagem de máquina em apoio a diagnóstico em ortopedia

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Silva, Marcelo Cicero Ribeiro da
Orientador(a): Bianchini, David
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: PUC-Campinas
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
KDD
Link de acesso: http://repositorio.sis.puc-campinas.edu.br/xmlui/handle/123456789/15027
Resumo: Um dos grandes responsáveis pela mudança deum panorama competidor é o progresso constante da tecnologia da informação e comunicação (TIC).A maior parte das dificuldades na tomada de decisão é a transformação de dados e informações em conhecimento, principalmente quando as bases de dados dizem respeito à saúde. Com a evolução da tecnologia e do „aprendizado de máquina‟(machine learning), já se dispõe de computadores capazes de realizar aprendizado de forma sofisticada, permitindo sua utilização no auxílio nas prescrições de diagnóstico médico, gerando uma segunda opinião para o profissional da medicina e contribuindo, assim, para uma melhor prestação de serviço à comunidade. O objetivo da pesquisa relatada consiste em elaborar um modelo computacional, apoiado em mineração de dados com uso de técnicas de aprendizado de máquina, que, utilizando-se de dispositivos de comunicação integrados às tecnologias de comunicação e informação e que venha oferecer suporte eficiente para o diagnóstico médico na área de ortopedia. A prova do conceito desta proposta utilizará de uma base de dados pública na especialidade da ortopedia (coluna vertebral) e o objetivo específico será o de auxiliar o médico na descoberta das doenças Listese e Hérnia de Disco. Esta aplicação trabalhou com o conceito de descoberta de conhecimento em bases de dados (Knowledge Discovery in Databases), para conseguir o resultado desejado. Esse processo a Mineração de Dados que, por meio de algoritmos de classificação, poderá transformar dados em informações úteis ao apoio do profissional médico na elaboração do seu diagnóstico. A pesquisa irá explorar e definir, na ferramenta de Data Mining WEKA, o algoritmo mais apropriado, dentre os vários já existentes, que possa oferecer maior acurácia no diagnóstico e que viabilize uma solução tipo mobile. A dinâmica estruturada neste trabalho deverá permitir que o sistema seja enriquecido a cada novo paciente tratado e que, com isto, a plataforma se torne mais eficiente e eficaz à medida que se amplie. Espera-se que o modelo computacional elaborado possa se configurar como uma segunda opinião em apoio ao diagnóstico do profissional médico retornando o diagnostico do paciente. Os resultados obtidos foram satisfatórios obtendo um índice de acuracidade média acima de 86%. Dentre os benefícios acredita-se que será possível auxiliar na formação de novos profissionais auxiliando-os na Residência Médica, na redução de problemas decorrentes de erros médicos e, dessa forma, aumenta-se a eficácia no atendimento com ganhos de tempo e dinheiro.