Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Martins, Madjer de Andrade |
Orientador(a): |
Garren, David A. |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Naval Postgraduate School (NPS)
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.mar.mil.br/handle/ripcmb/844794
|
Resumo: |
The employment of unmanned aerial vehicles is currently a fact in modern warfare. The benefit of using drones as a swarm, working together to accomplish a task, will help save lives; however, the communication among drones within a swarm is a challenge with the available technology due mainly to the power requirements to operate in a small device. Inspired by the massive machine-type communication 5th generation mobile networks, this work offers a novel method of identification and ranging for drones in swarm. The 5G communication channel’s preamble with a Zadoff-Chu (ZC) sequence is expected to provide low power and less interference between devices and yet yield good mean-square error results when a matched filter is applied. Simulations considering different numbers of drones within a swarm embedded in noisy and Doppler-affected environments demonstrate promising results even in poor scenarios with small signal-to-noise ratio and high Doppler frequency shift, especially when the batch of ZC sequences’ root indexes are selected into a special group. |