Análise numérica de uma formulação primal híbrida estabilizada aplicada ao problema de condução de calor

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Barreiro, Daiana Soares
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Laboratório Nacional de Computação Científica
Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA)
Brasil
LNCC
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.lncc.br/handle/tede/271
Resumo: Neste trabalho, uma análise numérica é desenvolvida para um método híbrido estabilizado de elementos finitos para problemas transientes de condução de calor. Classicamente, soluções numéricas para esses problemas são comumente encontradas utilizando-se o básico método de Galerkin. Contudo, quando utilizado com passos de tempo reduzidos e malhas de tamanho fixo, oscilações espúrias espaciais aparecem à medida que o tempo aumenta, poluindo a solução nos tempos iniciais. Em contrapartida, a abordagem aqui empregada para obter a solução desses problemas consiste na aplicação de um método de elementos finitos híbrido estabilizado para a aproximação espacial, combinado com esquemas de diferenças finitas, mais precisamente os métodos de Euler e de Crank-Nicolson, para a aproximação temporal. O método híbrido utilizado é baseado no método de Galerkin Descontínuo (GD) e construído através do acoplamento de problemas locais, de onde a solução da variável primal é encontrada, com um problema global que está associado aos graus de liberdade do multiplicador de Lagrange identificado ao traço da variável primal; sendo a continuidade entre os elementos imposta de forma fraca. A análise numérica mostra que a formulação proposta preserva as principais características dos métodos GD associados, tais como consistência, estabilidade, continuidade e taxas ótimas de convergência na norma da energia. Experimentos numéricos são apresentados confirmando as análises teóricas aqui desenvolvidas e evidenciando a ausência de oscilações espúrias para pequenos tempos.