Modelagem de população de neurônios via equações diferenciais parciais

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Souza , Marcos Teixeira de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Laboratório Nacional de Computação Científica
Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA)
Brasil
LNCC
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.lncc.br/handle/tede/270
Resumo: A neurociência tem como objetivo entender os mecanismos que regulam o sistema nervoso, para combater os males existentes associados a funções cerebrais, ampliar o conhecimento no desenvolvimento cognitivo humano, etc. No presente trabalho estudamos a comunicação entre neurônios de uma mesma região do cérebro com o propósito na construção de um modelo matemático que descreva de forma acurada e exequível computacionalmente como as informações são transmitidas entre as células neuronais. Abordamos o comportamento dos neurônios através das equações de FiztHugh-Nagumo, construindo um modelo discreto consistente com o modelo contínuo através da estratégia de aumentar cada vez mais a quantidade de neurônios dentro da rede neural considerada. Consequentemente obtemos resultados numéricos caracterizados por modelos de equações diferenciais parciais que descrevem a distribuição de um potencial de ação através de equações não lineares do tipo reação-difusão-convecção e um estudo de convergência do modelo discreto.