Evolução diferencial para problemas de otimização restrita
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos BR LNCC Programa de Pós-Graduação em Modelagem Computacional |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.lncc.br/handle/tede/117 |
Resumo: | A otimização é uma grande área de conhecimento voltada para a necessidade de um melhor aproveitamento de recursos e atividades, tornando-se indispensável na resolução de grande parte dos problemas oriundos de estudos e formulações de problemas reais. Além disso, as restrições que devem ser respeitadas para cada situação introduzem nas metodologias de otimização um complicador adicional. A Evolução Diferencial, que em sua formulação original é aplicada somente a problemas de otimização irrestrita e em espaços contínuos, apresenta também bons resultados quando aplicada à otimização restrita com variáveis contínuas e discretas. Este trabalho apresenta os aperfeiçoamentos necessários à Evolução Diferencial para sua adequada aplicação sobre essa classe de problemas, além de propor uma nova combinação de técnicas para essa aplicação, bem como um mecanismo de seleção dinâmica da variante adequada da técnica. A proposta inicial é a combinação da Evolução Diferencial com uma técnica adaptativa de penalização (APM) e a segunda proposta visa a seleção dinâmica de variantes durante o processo de busca. Vários experimentos computacionais são executados confirmando a competitividade dos algoritmos propostos. |