Algoritmos genéticos assistidos por metamodelos baseados em similaridade

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Fonseca, Leonardo Goliatt da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos
BR
LNCC
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.lncc.br/handle/tede/118
Resumo: Vários problemas de interesse em Ciência e Engenharia são formulados como problemas de otimização. A complexidade dos problemas modernos tem levado ao desenvolvimento de modelos matemáticos de complexidade crescente, resultando em modelos de simulação computacionalmente custosos. Algoritmos Genéticos (AG), inspirados na Teoria de Evolução por seleção natural, são ferramentas versáteis em problemas difíceis de busca e otimização. Entretanto, eles usualmente requerem um elevado número de avaliações até a obtenção de uma solução viável ou satisfatória. Em um cenário de simulações dispendiosas, o uso de Algoritmos Genéticos pode tornar-se proibitivo. Uma possível solução para este problema é o uso de um metamodelo, para ser usado no processo de otimização no lugar do modelo de simulação. Nesta tese desenvolveu-se uma metodologia para o uso combinado de AG e metamodelos para otimização mono- e multi-objetivo de alto custo computacional, onde metamodelos baseados em similaridade são incorporados nos AG com o objetivo de melhorar o seu desempenho. A metodologia foi aplicada em problemas de otimização coletados da literatura, e em problemas de Otimização Estrutural, demonstrando sua aplicabilidade e estabelecendo esta como uma alternativa para o melhoramento de soluções em um contexto de orçamento fixo de simulações.