Processamento de perfis metabólicos

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Vilela, Marco Antônio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos
BR
LNCC
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.lncc.br/handle/tede/58
Resumo: Nos últimos 30 anos, a Teoria dos Sistemas Bioquímicos (Biochemical System Theory - BST) tem fornecido uma fundação concreta para o estudo da dinâmica de sistemas biológicos, por exemplo, Sistemas-S (S-systems) usados em engenharia reversa de vias metabólicas (Savageau, 1969; Savageau, 1970; Voit, 2000). Uma característica marcante desse tipo de modelo é que os parâmetros não só quantificam as interações entres os componentes da rede metabólica, mas também fornecem a sua topologia de regulação. Procedimentos automáticos para a parametrização dos Sistemas-S a partir de séries temporais biológicas vêm sendo desenvolvidos por vários pesquisadores, onde se assume que a série temporal e sua derivada temporal são livres de ruído. Entretando, perfis metabólicos livres de ruído não são um realistas em cenários de experimentos de biologia molecular. Técnicas como Redes Neurais Artificiais (RNA), Máquinas de Vetores de Suporte (MVP) e filtro de Saviztsky-Golay foram propostas como solução do problema de suavização dos perfis metabólicos com a vantagem da obtenção da derivada temporal simbólica (Almeida and Voit, 2003; Borges, et al., 2006; Borges, et al., 2004; Voit and Almeida, 2004). Entretanto, essas soluções apresentaram alguns artefatos problemáticos na derivada até mesmo quando nenhum problema é visualmente detectado no dado suavizado, deixando aberto um espaço vazio na questão de um método automático para a parametrização dos Sistemas-S a partir de dados experimentais. O algoritmo apresentado neste trabalho propõe preencher esse espaço com uma ferramenta robusta para a extração de sinal e de sua derivada temporal a partir de séries temporais ruidosas.