Uma nova representação para o problema da estrutura de proteínas em grades

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Pedro, Luciana Rocha
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos
BR
LNCC
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.lncc.br/handle/tede/104
Resumo: Encontrar a estrutura de uma proteína arbitrária é vital para a compreensão da funcionalidade desta proteína. Muitos modelos foram desenvolvidos para a predição em primeiros princípios, entre eles modelos de grades. Em modelos de grades, cada aminoácido ocupa uma posição da grade, com aminoácidos consecutivos ocupando posições adjacentes. Uma possível conformação da proteína é dada por um caminho nesta grade. Em uma grade, temos várias formas de codificar computacionalmente uma seqüência de aminoácidos. O método mais usado é o de coordenadas internas, mas também encontramos na literatura codificações por coordenadas cartesianas e ângulos de torção. Neste trabalho, introduzimos uma nova codificação dos dados para modelos de grades. Nesta codificação, uma proteína com n aminoácidos é configurada como uma seqüência numérica, com valores variando entre 0 e no caso bidimensional e e no caso tridimensional. Nesta grade, os possíveis movimentos para cada aminoácido são intuitivos e correspondem a somar e subtrair 1 e n no caso bidimensional e , e no caso tridimensional. Para exemplificarmos o desenvolvimento desta nova codificação, desenvolvemos um algoritmo genético específico para o problema de predição da estrutura da proteína (PSP). Analisamos o desenvolvimento deste algoritmo em quatro modelos, , , e , e realizamos testes com proteínas encontradas na literatura e no Protein Data Bank.