Managing large-scale scientific hypotheses as uncertain and probabilistic data

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Gonçalves, Bernardo Nunes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos
Brasil
LNCC
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.lncc.br/handle/tede/197
Resumo: In view of the paradigm shift that makes science ever more data-driven, in this thesis we propose a synthesis method for encoding and managing large-scale deterministic scientific hypotheses as uncertain and probabilistic data. In the form of mathematical equations, hypotheses symmetrically relate aspects of the studied phenomena. For computing predictions, however, deterministic hypotheses can be abstracted as functions. We build upon Simon's notion of structural equations in order to efficiently extract the (so-called) causal ordering between variables, implicit in a hypothesis structure (set of mathematical equations). We show how to process the hypothesis predictive structure effectively through original algorithms for encoding it into a set of functional dependencies (fd's) and then performing causal reasoning in terms of acyclic pseudo-transitive reasoning over fd's. Such reasoning reveals important causal dependencies implicit in the hypothesis predictive data and guide our synthesis of a probabilistic database. Like in the field of graphical models in AI, such a probabilistic database should be normalized so that the uncertainty arisen from competing hypotheses is decomposed into factors and propagated properly onto predictive data by recovering its joint probability distribution through a lossless join. That is motivated as a design-theoretic principle for data-driven hypothesis management and predictive analytics. The method is applicable to both quantitative and qualitative deterministic hypotheses and demonstrated in realistic use cases from computational science.