Modelagem e estabilidade uniforme de vigas curvas termoelásticas
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Laboratório Nacional de Computação Científica
Serviço de Análise e Apoio a Formação de Recursos Humanos Brasil LNCC Programa de Pós-Graduação em Modelagem Computacional |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.lncc.br/handle/tede/199 |
Resumo: | Neste trabalho estudamos a equação do calor com a lei de Fourier, resultando em uma equação de evolução do tipo parabólica, e isso nos leva ao chamado paradoxo da velocidade de propagação infinita. A tese propõe modelos alternativos para evitar este problema. Para isto é necessário desenvolver critérios físicos, sobre a modelagem de sistemas elásticos, de tal forma que o paradoxo da velocidade infinita de propagação não aconteça. Discutimos diversas teorias da propagação do calor, como a lei de Maxwell-Cattaneo. A teoria termodinâmica, denominada termoelasticidade III, foi adaptada para a modelagem de vigas curvas. Uma vez justificados os modelos termoelásticos estudados, o método usado para validar tais modelos é a teoria de semigrupos. Estudaremos as propriedades qualitativas dos correspondentes modelos termoelásticos, como a estabilidade uniforme das soluções. Finalmente, provamos resultados de estabilidade exponencial e polinomial de soluções para os modelos de viga de Bresse. |