Modelagem híbrida multiescala para o crescimento tumoral

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Rocha, Heber Lima da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Laboratório Nacional de Computação Científica
Coordenação de Pós-Graduação e Aperfeiçoamento (COPGA)
Brasil
LNCC
Programa de Pós-Graduação em Modelagem Computacional
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.lncc.br/handle/tede/236
Resumo: O câncer é um enorme problema de saúde global, o que vem impulsionando pesquisas nas mais diversas áreas associadas ao seu surgimento, evolução e terapias. Neste trabalho realizamos um estudo minucioso acerca do crescimento tumoral a fim de construir um modelo que descreve o crescimento tumoral em diversas escalas. Desenvolvemos um modelo multiescala híbrido para o crescimento tumoral avascular que integra fenômenos que ocorrem em duas escalas, uma escala a nível celular e outra a nível de tecido. A escala celular é descrita através de um modelo baseado em agentes, que possibilita tratar cada célula individualmente e descrever seu comportamento no microambiente. Na escala do tecido representamos a dispersão de nutrientes no meio através de uma equação diferencial parcial de reação-difusão. Consideramos o oxigênio como a única fonte de nutrientes e seu consumo é o mecanismo através do qual o acoplamento entre as escalas é realizado. Consideramos que cada célula no modelo pode ser tumoral ou normal, sendo as células normais mantidas em homeostase. As células tumorais são diferenciadas pelos estados fenotípicos (quiescente, proliferativa, apoptótica, hipóxica e necrótica), que podem ser alterados em função das condições do meio. A dinâmica do crescimento tumoral é regida pelas transições entre estados fenotípicos, as quais, em sua maioria, são consideradas eventos determinísticos. Entretanto, as transições do estado quiescente para o proliferativo e para o apoptótico são assumidas como estocásticas. O movimento de cada célula no meio é determinado por um balanço de forças atuantes nas células, de acordo com a segunda lei de Newton. Com a inclusão de células normais, o crescimento do tumor é fortemente influenciado pelas interações mecânicas no microambiente. Para descrever estes efeitos, desenvolvemos um modelo para representar o acúmulo das tensões de compressão no interior do tumor à medida que o tumor cresce, o qual atua inibindo a probabilidade de proliferação das células tumorais. As simulações realizadas demonstram que o modelo desenvolvido consegue representar qualitativamente a dinâmica de tumores em um microambiente genérico e a estagnação do crescimento típica de tumores avasculares.