Estimadores estocásticos para fusão de sensores inerciais e GPS.

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Fernanda Menezes Ribeiro de Carvalho
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto Tecnológico de Aeronáutica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=949
Resumo: Este trabalho apresenta um sistema completo para simulação e avaliação do uso de filtros estocásticos para combinar medidas de posição feitas por um sistema inercial, composto de girômetros e acelerômetros, com medidas de posição de um sistema GPS, de modo que possamos extrair uma estimativa do erro de posição acumulado por integração das medidas dos sensores inerciais e corrigir a leitura do mesmo. Para tal, foram desenvolvidos em detalhes e validados um modelo de navegação e um modelo de espaço de estados onde o vetor de variáveis ocultas é a combinação dos erros de posição, velocidade, atitude e fator de escala dos sensores inerciais e deriva de ambos os sensores, inerciais e do GPS. Ainda foram implementados e analisados em sua performance três tipos de Filtros aplicados quando o modelo de observações é não-linear: o Filtro Estendido de Kalman (EKF), o Filtro de Kalman Unscented (UKF) e o Filtro de partículas com Função de importância ótima e Reamostragem. Resultados da Integração Inercial-GPS em diversas trajetórias e configurações de parâmetros são apresentados, bem como os problemas e as soluções na implementação são discutidos.