Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Ronaldo Rodrigues Pelá |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto Tecnológico de Aeronáutica
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1951
|
Resumo: |
Justificadamente, o século XX poderia ser qualificado como o século da Eletrônica. Em 50 anos, os dispositivos eletrônicos revolucionaram a sociedade, incluindo desde os brinquedos eletrônicos e os eletrodomésticos, até os gigantescos supercomputadores usados em previsões climáticas. Toda esta revolução ocorreu à sombra de uma técnica para tornar os dispositivos menores e mais eficientes: esta técnica é conhecida como miniaturização ou top-down. No entanto, à medida que as dimensões dos dispositivos se aproximam das atômicas, parece que esta abordagem precisa ser substituída por uma nova: bottom-up. E é assim que acontece na Nanoeletrônica, da qual a Spintrônica pode ser considerada como uma sub-área. Nesta tese, estudamos teoricamente dois tipos de transistores spintrônicos: um bipolar e um a efeito de campo. Em linhas gerais, observamos que os dispositivos spintrônicos são melhores que os convencionais, mas sempre há um desafio associado (para assegurar este melhor desempenho). Paralela e conjuntamente à Spintrônica, diversos dispositivos têm sido propostos utilizando-se nanoestruturas semicondutoras. Em particular, com os pontos quânticos pode-se controlar o estado de um elétron individualmente, inclusive o seu spin, o que pode abrir caminho para a Computação Quântica ou para a Spintrônica de um único elétron. Nesta tese, estudamos pontos quânticos de GaN numa matriz de AlN, utilizando uma metodologia que aplica, de forma inédita, cálculos de primeiros princípios ao estudo destas nanoestruturas com célula unitária com uma quantidade de átomos da ordem de 10 milhões. |