Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Moacyr Machado Cardoso Junior |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto Tecnológico de Aeronáutica
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2939
|
Resumo: |
Os mapas perceptuais obtidos via escalonamento multidimensional representam uma poderosa ferramenta estatística para análise de dados multivariados. São aplicados em várias áreas do conhecimento humano por permitir ao pesquisador comprovar ou validar um modelo idealizado do comportamento humano frente a julgamentos subjetivos obtidos utilizando escalas ordinais. Sua utilização nas ciências sociais, marcadamente psicologia, sociologia, política e na percepção de riscos são destacadas pois estas ciências tomam por base a subjetividade do julgamento humano. Neste contexto, essa tese tem por objetivo incorporar a incerteza do posicionamento dos objetos após o escalonamento multidimensional, para que o modelo conceitual imposto possa ser testado levando em conta a variabilidade inerente a um grupo de julgadores. O modelo proposto parte da premissa de que as funções de distribuição de probabilidade não são conhecidas para as coordenadas dos objetos no mapa perceptual e que os julgadores e os objetos estudados são estatisticamente independentes entre si. A ferramenta explora uma característica do escalonamento multidimensional, que é a representação gráfica do conjunto de dados em baixa dimensão, e além disso, a análise dos diferentes objetos representados no mapa perceptual é realizada à luz da inferência estatística. O modelo para geração do mapa perceptual de 3-vias, denominado extbf{MDSvarext}, é obtido em 3 fases: i) Redução de dimensão e geração de agrupamentos; ii) Alinhamento das configurações, e iii) Obtenção das regiões de confiança. Como resultado verifica-se que a incorporação da geração de agrupamentos, utilizando o método extbf{K-médias} ao extbf{MDSvarext}, mostra-se viável pois permite produzir agrupamentos que reduzem a variabilidade e consequentemente as regiões de confiança nos mapas gerados, além da obtenção de mais de um mapa. Finalmente com a redução da variabilidade torna-se possível a representação das regiões de confiança que mostram visualmente nos mapas gerados quais objetos diferem estatisticamente entre si. |