Data fusion and multiple models filtering for launch vehicle tracking and impact point prediction: the Alcântara case.

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Julio Cesar Bolzani de Campos Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Instituto Tecnológico de Aeronáutica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=679
Resumo: This work focuses on tracking launch vehicles with multiple radar sites and proposes a data fusion strategy based on the Covariance Intersection (CI) method. At each site, multiple models are embedded in a Kalman filter or locally estimate position, velocity, and acceleration using a de-biased measurement transformation from spherical to cartesian coordinates. The estimation of position, velocity, and acceleration of moving object based on radar measurements is critical in applications such as air traffic control, surveillance systems, and orbital vehicles launching among many others. However, this work will focus on the conditions observed at Alcântara Launch Center, where two radars located at distinct sites provide the trajectory coverage. All simulations presented herein make use of actual data obtained from a VS30 sounding rocket launch at Alcântara Launch Center in February, 2000. Impact point prediction is also assessed, and considers uncertainties inferred form the computed covariance matrix, culminating in an ellipsoidal impact area with a given impact probability.