Accurate abandoned object detection (AOD) in surveillance video

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Alex Lopes Pereira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Instituto Tecnológico de Aeronáutica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=3230
Resumo: The aim of the present research is to investigate the problem known as Abandoned Object Detection (AOD) in surveillance videos, where stationary objects must be classified as either abandoned or removed. We found four categories of methods to solve the AOD problem, namely, region growing, edge detection, color comparison and image inpainting and investigated all of them. We found the major drawback of each category, from which we derived guidelines that oriented the development of three novel methods. Among these three methods, the proposed method (based on edge detection) measures the ratio of a blob boundary that is covered by edges in the reference image. This method achieved convincing results on 66 test scenarios compared to results of most recent works in the literature, equaling or surpassing these results. Furthermore, we proposed a frame window scheme to combine the information from several frames about a given object in order to provide a robust classification. The experiments show our method achieved and surpassed the state-of-the-art results.