Utilização de aprendizado por reforço para modelagem autônoma do aprendiz em sistemas tutores inteligentes.

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: Marcus Vinicius Carvalho Guelpeli
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto Tecnológico de Aeronáutica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2733
Resumo: Este trabalho apresenta um novo modelo de módulo de diagnóstico para ser incluído na arquitetura tradicional de Sistemas de Tutores Inteligentes. Neste módulo, são aplicadas técnicas de Aprendizado por Reforço (algoritmo Q-Learning), o que possibilita modelar autonomamente o aprendiz. Um valor de utilidade é calculado baseado em uma tabela de pares estado-ação, a partir da qual o algoritmo estima reforços futuros que representam os estados cognitivos do aprendiz. A melhor política a ser usada pelo tutor para qualquer estado cognitivo do aprendiz é disponibilizada pelo próprio algoritmo de Aprendizado por Reforço, sem que seja necessário um modelo explícito do aprendiz.