Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Alexandre Bittencourt Faria |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto Tecnológico de Aeronáutica
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1957
|
Resumo: |
O presente trabalho tem como objetivo extrair conhecimento de um banco de dados que contém as mensagens de alerta geradas pelos computadores embarcados instalados nos veículos de uma grande frota usada no transporte coletivo urbano na cidade de São Paulo. Para tal foi aplicada a técnica de aprendizado de árvores de decisão. Nos experimentos foram usados os algoritmos CART, ID3 e C4.5 implementados nos softwares MATLAB R2007b, Sipina Research e WEKA 3.7.1. A base de dados usada contém cerca de 25 mil mensagens de alerta coletadas durante cerca de 2 meses de operação dos veículos que compõe o sistema de transporte público urbano. Os seguintes 4 atributos de entrada foram investigados: Área (Leste, Noroeste, Norte), Sentido (Centro-Bairro, Bairro-Centro), Período (Madrugada, Manhã, Tarde e Noite) e Dia Útil (Sim ou Não). Como atributo de saída foi usado as variavel ALERTA cujos os possíveis valores são: Catraca, Elétrica, Mecânica, Pneu, Terceiro e Veículo). As diferentes implementações de algoritmos investigadas geraram árvores de decisão similares contendo de 4 a 28 regras do tipo "SE-ENTÃO" com acurácia de 80% e precisão de 40% aproximadamente. |