Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Ícaro Bezerra Viana |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto Tecnológico de Aeronáutica
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2236
|
Resumo: |
Este trabalho propõe uma metodologia para o prognóstico de sistemas com base em série temporal de parâmetro indicativo da condição do equipamento. A série temporal é dividida em diferentes cenários candidatos de acordo com a modificação de variáveis exógenas que representam condições ambientais externas ao sistema. A cada cenário válido é associado um modelo de progressão específico construído em um ciclo iterativo que segue uma abordagem de análise de séries temporais estocásticas do tipo ARIMA (Autoregressive Integrated Moving Average Process). O modelo utilizado para fins de prognóstico é determinado pela combinação de modelo de progressão do cenário mais atual com o modelo associado ao cenário passado mais similar ao atual. No contexto de prognóstico econômico realiza-se uma comparação com vias a ilustrar equivalência entre a classe de modelos ARIMA utilizada com modelo polinomial disponível na literatura, aplicando-se estas metodologias no problema de previsão do índice Dow Jones. A viabilidade da abordagem proposta, em se tratando de prognóstico de equipamento, é demonstrada através da predição de um índice de degradação para motor de corrente contínua (C.C.), onde os dados simulados são gerados a partir de um benchmark que representa o sistema de acionamento da máquina (C.C.). |