Localização baseada em método de Monte Carlo e algoritmos genéticos para robótica móvel.

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: Luis Fernando Almeida
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto Tecnológico de Aeronáutica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2747
Resumo: A robótica móvel autônoma é uma área de pesquisa onde o foco primordial concentra-se na busca incessante de meios que possibilitem a operação de um robô móvel sem a intervenção humana e de um modo mais inteligente possível. Para isso, essa busca pode ser dividida em diferentes ênfases: planejamento de ações, mapeamento de ambiente e localização do robô dentro do mundo em que se encontra. Mais especificamente, o problema de determinação da localização é considerado por alguns como o fator mais importante para capacitar a autonomia de um robô móvel. Muito já foi proposto sobre técnicas de localização, e, dentre as mais recentes, destaca-se o algoritmo de localização Monte Carlo, uma técnica eficiente no que diz respeito à solução dos diversos problemas que abrangem estimação de posição de um robô móvel. O trabalho aqui apresentado tem por objetivo a implementação de um algoritmo de estimação de posição baseado no algoritmo de localização Monte Carlo em conjunto com um Algoritmo Genético. Aqui, a função deste último é minimizar erros acentuados de localização, ocasionados pela deficiência dos modelos probabilísticos que representam a dinâmica de movimento e a percepção sensorial do robô. Isso acontece, principalmente no caso de sensores do tipo sonar diante de obstáculos do tipo quina. O resultado obtido é o método de localização Monte Carlo Genético, que se apresentou como uma possível solução para minimização desses erros de localização. O grande empecilho, porém, constatado nessa abordagem, é o elevado número de parâmetros a serem configurados. O desafio, então, torna-se encontrar o ajuste ideal de parametrização para obtenção de melhor desempenho deste método.