MIDC - um método de inferência difusa para classificação em banco de dados

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Strauss Cunha Carvalho
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto Tecnológico de Aeronáutica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=2963
Resumo: Este trabalho propõe um Método de Inferência Difusa para Classificação em Banco de Dados, denominado MIDC, visando aumentar a eficiência no tratamento de incertezas e imprecisões nas recuperações e classificações de informações a fim de tratá-las, qualitativamente, de modo semelhante ao raciocínio humano. Deste modo, propicia-se aos sistemas de Banco de Dados, por meio da utilização de termos qualitativos (linguísticos), as capacidades de recuperar, classificar e manipular informações, representando-as além das fronteiras da Lógica Clássica. O método proposto utiliza-se de um Sistema de Inferência Difusa (SID), composto de uma base de regras e um mecanismo de inferência, aplicável, também, na tarefa de Classificação da etapa de Mineração de Dados (Data Mining - DM) do Processo de Descoberta de Conhecimento em Banco de Dados (Knowledge Discovery in Databases - KDD). O m ?todo proposto foi verificado em um estudo de caso que propiciou realizar experimentos com grandes volume de dados, a fim compará-lo com um método tradicional de consulta e classificação em Bancos de Dados. Deste modo, propiciou-se uma comparação entre a recuperação e classificação de informações, utilizando-se Lógica Difusa e Lógica Clássica.