Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Anna Karina Fontes Gomes |
Orientador(a): |
Margarete Oliveira Domingues |
Banca de defesa: |
Odim Mendes Júnior,
José Eduardo Castilho,
Erico Luiz Rempel |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto Nacional de Pesquisas Espaciais (INPE)
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação do INPE em Computação Aplicada
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Resumo em Inglês: |
The space plasma simulation is basically related to three models: particles-in-cell, hybrid and magnetohydrodynamics. The main difference between these models is the scale of the physical phenomena. In this work, we study the conservative ideal mag-netohydrodynamics model (MHD) using the extended generalized Lagrange multiplier (EGLM). In this model, the plasma is considered a non-collisional fiuid and it has divergence-free corrections for the magnetic fiux equation, because we need this equation to be correctely-solved numerically. In several applications of this model, e.g., the space sciences studies, there are different types of phenomena, such as dis-continuities and shocks. Thus, it is even more important to refine the simulation mesh to well-model those types of behaviour locally. On the traditional methods of refining, the mesh refinement is done globally, \textit{i.e.}, it refines the entire mesh, even where it does not need to be refined. On the other hand, in adaptive methods it uses a mesh that adapts itself to the solution we want to obtain, in every time step. Using the adaptive multiresolution analysis technique, the wavelet coefficients are basically used as indicators of local regularity of the numerical solution and they define how the hierarchical refinement will be done. Moreover, when using this technique, it is possible to obtain, at any moment, the solution in a more refined leveI by using the multiresolution algorithms. In this work, we use the multiresolution approach, with the finite volume method, to represent the solution of the extended generalized Lagrangian multiplier MHD mo del and we want to verify this new approach in this physical context. |
Link de acesso: |
http://urlib.net/sid.inpe.br/mtc-m19/2012/08.10.15.02
|
Resumo: |
A simulação de fenômenos do plasma espacial se dá, basicamente, por três tipos de modelagem: partículas, híbrida e magnetohidrodinâmica. Esses tipos de modelagem diferem basicamente quanto à simplificação do problema e à abrangência da área de estudo. Neste trabalho, estuda-se o modelo magnetohidrodinâmico (MHD) ideal conservativo com multiplicadores de Lagrange generalizados estendidos (EGLM). Esse modelo considera o plasma como um fluido não-colisional e utiliza correções de divergência livre para que a equação de fluxo magnético seja bem resolvida nu-mericamente. Em várias aplicações desse tipo de modelo, como, por exemplo, nos estudos das ciências espaciais, ocorrem fenômenos como descontinuidades e choques localizados na solução. Para que esses tipos de comportamentos sejam bem modelados, é necessário um refinamento maior da malha de simulação numérica nos locais onde ocorrem. Nos métodos tradicionais, esse refinamento é realizado globalmente na malha, \textit{i.e.}, refina-se toda a malha, mesmo onde não há necessidade de refinamento. Por outro lado, nos métodos adaptativos, utiliza-se uma malha que se adapta automaticamente à solução que se deseja obter, em cada passo de tempo. Ao utilizar a técnica de análise multirresolução adaptativa, basicamente, os coeficientes wavelet são utilizados como indicadores de regularidade local da solução numérica e definem como se dará os refinamentos hieráquicos da malha. Ao mesmo tempo, ao utilizar essa técnica é possível obter, em qualquer momento, a solução do modelo no nível mais refinado da malha, utilizando os algoritmos de reconstrução no contexto da análise de multirresolução. Neste trabalho, é utilizada a abordagem de multirresolução adaptativa, combinada ao método dos volumes finitos, para simular numericamente o modelo MHD com multiplicador de Lagrange generalizado estendido, a fim de verificar essa nova abordagem nesse contexto físico. |