Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Michelle de Oliveira Parreira |
Orientador(a): |
Luciano Vieira Dutra,
Eliana Pantaleão |
Banca de defesa: |
Carlos Henrique Quartucci Forster,
Rogério Galante Negri,
Nelson Delfino d'Ávila Mascarenhas |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto Nacional de Pesquisas Espaciais (INPE)
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação do INPE em Computação Aplicada
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Resumo em Inglês: |
This work proposes the classifier method HSMI (Hierarchical support vector machine with multiple kernels optimized by Invasive weed optimization) based on support vector machine (SVM) that uses multiple kernels and assigns the labels to classes in a hierarchical way. A binary tree is automatically created by the proposed algorithm and each node performs the classification between two partitions of the set of pre-sorted classes by the upper node. The classification is performed by the SVM classifier with multiple kernels combined taking advantage of the different characteristics of each kernel. The choice of the classes that make up each partition at each node is done by optimization along with the parameters of the kernels and the coefficients of the linear combination between them. For this the Invasive Weed Optimization algorithm (IWO) is used. This new method can separate hierarchically classes with better separability according to a multi-kernel SVM classifier optimized for each binary classification. The results were compared with the SVM method with Gaussian kernel and SVM with polynomial kernel. The results showed that the HSMI method in partitioning the classes of embedded form allows the fusion of confused classes identified in the classification process. |
Link de acesso: |
http://urlib.net/sid.inpe.br/mtc-m21b/2017/01.17.16.20
|
Resumo: |
Esse trabalho propõe o método HSMI (Hierarchical Support vector machine with Multiple kernels optimized by Invasive weed optimization) de classificação baseado em máquinas de vetores suporte (SVM) que usa múltiplos kernels e atribui os rótulos às classes de modo hierárquico. Uma árvore binária é criada automaticamente pelo algoritmo proposto e cada nó realiza a classificação entre duas partições do conjunto de classes pré-classificado pelo nó superior. A classificação é realizada pelo classificador SVM com múltiplos kernels combinados aproveitando as diferentes características de cada kernel. A escolha pelas classes que compõem cada partição em cada nó é feita por otimização junto com os parâmetros dos kernels e os coeficientes da combinação linear entre eles. Para isso é empregado o algoritmo Infestação por Ervas Daninhas (Invasive Weed Optimization, IWO). Esse novo método consegue separar hierarquicamente as classes com melhor separabilidade segundo um classificador SVM multikernel otimizado para cada classificação binária. Os resultados foram comparados com o método SVM com kernel gaussiano e SVM com kernel polinomial. Os resultados demonstraram que o método HSMI ao particionar as classes de forma embutida permite a fusão de classes confusas identificadas no processo de classificação. |