Machine Learning-based Direction of Arrival Estimation

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Carballeira, Anabel Reyes
Orientador(a): Figueiredo, Felipe lattes, Brito, Jos?? Marcos lattes
Banca de defesa: Figueiredo, . Felipe lattes, Dias, Cl??udio Ferreira lattes, Mafra, Samuel lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto Nacional de Telecomunica????es
Programa de Pós-Graduação: Mestrado em Engenharia de Telecomunica????es
Departamento: Instituto Nacional de Telecomunica????es
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.inatel.br:8080/tede/handle/tede/252
Resumo: Beamforming (BF) is expected to be one of the key technologies in Sixth Generation (6G) networks. BF improves the Signal-to-Noise Ratio (SNR) of received signals and focuses the radiation pattern to specific locations by weighting the amplitude and phase of individual antenna signals. This technique provides better coverage in an indoor environment and at the edge of a cell. To make the best use of this technology, it is essential to know the location of the device to direct the antenna beam of the radio Base Station (BS). Consequently, the Direction of Arrival (DOA) method becomes crucial and essential at this time. Therefore, this study addresses the problem of accurately predicting the azimuth and elevation angles of a signal impinging on an antenna array based on Machine Learning (ML) models. Simulation results show that ML models are competitive techniques to find the azimuth and elevation angles of a signal impinging on a receiving system.