Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
Pinto, Alex Cerqueira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
IDP/EAB
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.idp.edu.br//handle/123456789/3056
|
Resumo: |
O objetivo desse trabalho foi desenvolver modelos para previsão do risco de crédito, para verificar se modelos com uso de aprendizado de máquina apresentam melhor caráter preditivo comparado a tradicional regressão logística. Do mesmo modo, como objetivo específico, aplicar técnicas de interpretabilidade ao modelo de melhor performance, A metodologia adotada corresponde a uma pesquisa empírica econométrica com o uso das técnicas de aprendizado supervisionado. O público alvo foram empresas do segmento atacado, que possuem registros na Comissão de Valores Mobiliários (CVM). Para as variáveis do modelo foram utilizados indicadores econômicos e financeiros, retirados das demonstrações contábeis e patrimoniais das empresas, e também variáveis macroeconômicas. Os resultados indicam que o modelo de melhor capacidade preditiva foi o XGBoost, com curva ROC na base teste de 0.99 e acurácia de 0.98 Do mesmo modo, as principais variáveis preditivas foram os indicadores de PL/Exigível Total, Lucros Retidos/Ativos, Liquidez Seca, Estoque/Ativos e Necessidade de Capital de Giro (NCG). Na análise de interpretabilidade via Sharp value, os resultados corroboram a intepretação da importância e sentido econômico das variáveis. Assim, o Sharp value indica uma relação inversa entre as variáveis PL/Exigível Total, Liquidez Seca e Lucros Retidos/Ativos e o valor predito. Do mesmo modo, a interpretabilidade via interações mostrou que, para o modelo, as variáveis PL/Exigível Total, Necessidade de Capital de Giro, Lucros Retidos /Ativos e Estoque/Ativos são as que apresentam interações mais fortes com as demais variáveis. Estes resultados corroboram a tendência de crescimento do uso dos modelos com uso de técnicas de machine learning na área econômica por, muitas vezes, apresentarem melhor capacidade preditiva. |