Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Beckel, Cássia Cris |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://repositorio.furg.br/handle/1/6077
|
Resumo: |
Problemas de corte e empacotamento estão presentes em diversos setores da industria, e o estudo destes problemas propicia oportunidades de colaboração entre os setores acadêmicos e industrial, com vistas a que se obtenham benefícios para ambos, contribuindo para a sociedade como um todo. Entre os setores industriais nos quais surgem problemas de corte e empacotamento estão as industrias têxtil, automotiva, portuária, lapidaria, entre outras. O presente trabalho tem como objetivo elaborar uma metodologia analítica e computacional com a qual seja possível encontrar uma solução viável para o problema de empacotamento de elipses, sendo idênticas ou não, sem sobreposição e tangentes a cada vértice e quadrante de uma elipse inicial inscrita em um polígono irregular de n lados. A metodologia analítica e computacional desenvolvida visa obter a maximização da área total das elipses empacotadas e a minimização do tempo de processamento computacional. Destaca-se a aplicabilidade das transformações em R2 para obter as novas equações paramétricas das elipses com centro deslocado da origem e rotacionadas em relação ao sistema de eixos cartesianos original. A heurística que realiza a verificação da inscrição de cada elipse, baseia-se em uma modificação da função inpolygon do software Matlab [34], de maneira que garante o empacotamento total das elipses no polígono. Para validar a heurística construtiva utilizaram-se 7 polígonos e com os resultados obtidos em cada simulação foi possível encontrar a função exponencial, através de um ajuste de curva, que descreve o comportamento da simulação. |