Numerical Solution of PDE’s Using Deep Learning

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Lima, Lucas Farias
Orientador(a): Saporito, Yuri Fahham
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
PDE
Link de acesso: https://hdl.handle.net/10438/28572
Resumo: This work presents a method for the solution of partial diferential equations (PDE’s) using neural networks, more specifically deep learning. The main idea behind the method is using a function of the PDE itself as the loss function, together with the boundary conditions, based mainly on [Sirignano and Spiliopoulos, 2017]. The method uses a architecture similar to one of LSTM (Long short-term memory) recurrent neural networks, and a loss function computed on a random sample of the domain. The examples considered in this thesis come from financial mathematics, mean-field games and some other classical PDE’s.