Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Lima, Lucas Farias |
Orientador(a): |
Saporito, Yuri Fahham |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://hdl.handle.net/10438/28572
|
Resumo: |
This work presents a method for the solution of partial diferential equations (PDE’s) using neural networks, more specifically deep learning. The main idea behind the method is using a function of the PDE itself as the loss function, together with the boundary conditions, based mainly on [Sirignano and Spiliopoulos, 2017]. The method uses a architecture similar to one of LSTM (Long short-term memory) recurrent neural networks, and a loss function computed on a random sample of the domain. The examples considered in this thesis come from financial mathematics, mean-field games and some other classical PDE’s. |