Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Alves, Thiago Winkler |
Orientador(a): |
Ruilova Terán, Juan Carlos |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10438/11994
|
Resumo: |
Aiming at empirical findings, this work focuses on applying the HEAVY model for daily volatility with financial data from the Brazilian market. Quite similar to GARCH, this model seeks to harness high frequency data in order to achieve its objectives. Four variations of it were then implemented and their fit compared to GARCH equivalents, using metrics present in the literature. Results suggest that, in such a market, HEAVY does seem to specify daily volatility better, but not necessarily produces better predictions for it, what is, normally, the ultimate goal. The dataset used in this work consists of intraday trades of U.S. Dollar and Ibovespa future contracts from BM&FBovespa. |