Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Parravicini, Giovanni |
Orientador(a): |
Pereira, Pedro L. Valls |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Link de acesso: |
http://hdl.handle.net/10438/26054
|
Resumo: |
A dissertação a seguir tem como objetivo mostrar os benefícios de uma combinação de previsão entre uma metodo econométrico e um de Deep Learning. De um lado, um Factor Augmented Vector Autoregressive (FAVAR) com identificação naming variables seguindo Stock e Watson (2016); do outro lado, um Stacked De-noising Auto-encoders (SDAE-B), seguido por Zhao, Li e Yu (2017), é implementado. De janeiro de 2010 a Setembro de 2018, 281 séries mensais são usadas para prever o preço do West Texas Intermediate (WTI). O desempenho do modelo é analisado pelo Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) e Directional Accuracy (DA). A combinação se beneficia da alta precisão do SDAE-B e dos recursos de interpretação do FAVAR por meio das Impulse Response Functions (IRFs) e da Forecast Error Variance Decomposition (FEVD). |