Uma aplicação de redes neurais recorrentes do tipo LSTM à previsão dos preços de curto prazo do mercado de energia elétrica brasileiro

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Santos, Guilherme
Orientador(a): Pinto, Afonso de Campos
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: https://hdl.handle.net/10438/28069
Resumo: A formação dos preços de energia elétrica no mercado de curto prazo brasileiro é obtida através de modelos computacionais, não necessariamente pelas relações de oferta e demanda. Este fator, somado à própria dinâmica dos mercados de energia elétrica no geral, traz um elevado nível de incerteza a ser administrado pelos agentes participantes do mercado. Este trabalho desenvolve um modelo de redes neurais recorrentes, mais especificamente o modelo Long Short Term Memory, para a previsão dos preços à vista do mercado de energia elétrico brasileiro. O modelo baseia-se em variáveis históricas coletadas a partir de junho/2001 até dezembro/2018, com periodicidade semanal, sendo aplicado para os quatro subsistemas do Sistema Elétrico Brasileiro. Os valores são projetados para uma semana à frente, considerando os diferentes patamares de carga disponibilizados pela CCEE. Os algoritmos foram desenvolvidos a partir do software MATLAB, utilizando-se da biblioteca Deep Learning Toolbox. O modelo foi comparado com uma técnica alternativa a partir de simulações Bootstrap, que fundamentalmente simula os preços aleatoriamente de acordo com as distribuições empíricas dos seus retornos. Para a avaliação dos algoritmos foram utilizadas as métricas de desempenho MSE, RMSE, MAPE e Precisão de Movimento. A partir dos resultados obtidos é possível concluir que o modelo LSTM foi significativamente mais acurado quando comparado com o Bootstrap, demonstrando-se mais eficiente para identificar as movimentações dos preços em detrimento a uma assertividade do nível destes preços.