Machine learning methods for vessel type classification with underwater acoustic data

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Domingos, Lucas Cesar Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Centro Universitário FEI, São Bernardo do Campo
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.fei.edu.br/handle/FEI/4674
https://doi.org/10.31414/EE.2022.D.131558
Resumo: A identificaçãodeembarcaçõesemambientesdetráfegocontroladopodeserbenéfica para manutençãodabiodiversidadeeproteçãodosambientescosteirosderegiõesprotegidas, gerandocontribuiçõesparaacomunidadelocaleparaoecossistema.Nesseâmbito,vê-se latente anecessidadedemelhorestécnicasdeidentificaçãoeclassificaçãodeembarcações, proporcionando mecanismosparamelhoradestessistemas.Sinaissonorossubaquáticossão mais difíceisdeseremmascaradosouomitidosduranteanavegaçãodeumaembarcaçãoquando comparados comoutrasfontesdedados,proporcionandoumafonteconfiáveleresistentea fraudes parasistemasdeclassificação,porém,estessofreminterferênciasdascondiçõesdomeio em queseencontram.Nestetrabalho,umametodologiafoipropostapararealizaraclassificação de sinaissonorossubaquáticosprovenientesdeembarcaçõesutilizandotécnicasdeaprendizado de máquina,considerandotambémasvariáveisambientais,comoadistânciaentreoshidrofonese as embarcações.Umacomparaçãorelativaàperformancedasredesneuraisconvolucionaismais comuns foirealizadautilizandoaarquiteturadaVGGedaResNet18.Tambémforamrealizadas comparações entreostrêsfiltrosdepré-processamentoscomumentepresentesnaliteratura,os espectrogramasMel,osfiltrosGamma,eatransformadadeconstanteQ,proporcionandoum estudosobreoimpactodetaisvariáveisnaclassificaçãofinal.Devidoaescassezdeconjuntos de dadosanotadosparaestudodesteproblema,umconjuntodedadosanotadosfoiproposto utilizando comobaseossinaissonorosdainiciativaOceanCanadaNetwork.Osresultados obtidos atingiramaacuráciade94.95%noconjuntodedadospropostousandoCQTcomofiltro de pré-processamentoparaumaredeneuralconvolucionalbaseadanaResNet.Oscódigosfontes para reproduçãodostestes,assimcomoparaobtençãododataset,estãodisponibilizadosde maneira gratuita e pública para fins acadêmicos