Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Conforto, Victor Henrique |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Centro Universitário FEI, São Bernardo do Campo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.fei.edu.br/handle/FEI/284
|
Resumo: |
Segmentação de imagens é uma das áreas mais antigas de visão computacional, com muitos problemas bem definidos e várias soluções propostas bem aceitas. No entanto ainda há muito trabalho a ser feito, sobretudo em segmentação de imagens coloridas, devido à demanda por mais aplicações. Recentemente, duas novas tecnologias têm se destacado na área. O estudo de análise de imagens sob o ponto de vista da estatística não-extensiva e a utilização de algoritmos bio-inspirados para lidar com problemas que demandam multi-limiarização, geralmente computacionalmente inviáveis quando o espaço de busca é histogrâmico. Assim, a proposta desta dissertação é o estudo de um novo método baseado em enxame de partículas, recentemente proposto na literatura e chamado de Firefly, juntamente com Kernel entrópico não extensivo para a multilimiarização de imagens espectrais. Os resultados obtidos mostram que o metodo proposto utilizando o algoritmo firefly segmentando a imagem baseado apenas na dimensão H de HSV obteve o melhor resultado dentre os experimentos realizados. Este trabalho aborda ainda a comparação entre o uso de diferentes espaços de cores, parâmetros e filtros para a segmentação de imagens coloridas. |