Extração de sentenças relevantes de artigos científicos utilizando modelo de linguagem e representação vetorial de palavras
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Centro Universitário FEI, São Bernardo do Campo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.fei.edu.br/handle/FEI/4875 https://doi.org/10.31414/EE.2023.D.131643 |
Resumo: | Nas últimas décadas, o rápido avanço tecnológico gerou reflexos diretos na comunidade científica devido ao aumento da quantidade de pesquisas publicadas mensalmente. Visando colaborar com a rotina de estudo dos pesquisadores e diminuir a quantidade de tempo dedicada para a leitura e interpretação de artigos, técnicas para a extração de sentenças relevantes ganharam destaque no ramo de Processamento de Linguagem Natural. Neste sentido, o presente trabalho propõe duas investigações para automatizar a extração de frases representativas de artigos científicos. A primeira, consiste na premissa de extração de frases representativas comparando as sentenças presentes simultaneamente nas seções “Resumo”, “Introdução” e “Conclusão”. A segunda, na criação de um Modelo de Linguagem N-Gramas, treinado a partir das frases selecionadas pela premissa anterior, para aprender e generalizar o comportamento destas sentenças. O estudo incluiu técnicas de pré-processamento, vetorização de palavras (Word2Vec e FastText), similaridade cosseno e Modelo de Linguagem N-Gramas para a obtenção dos resultados. As frases obtidas foram validadas por meio da comparação com a sumarização padrão ouro e metrificadas pelo ROUGE-1. Entre os dois métodos testados, o melhor resultado foi obtido por meio da premissa de frases simultâneas entre as três seções mencionadas, utilizando o algoritmo de vetorização FastText, com 89% de F-Score ROUGE-1. O modelo de linguagem, mesmo com técnicas de suavização aplicadas, não teve dados suficientes para generalizar o comportamento da base de dados, pois 88% do vocabulário dos artigos de teste foi inédito ao modelo |