Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Parada, M. G. O. |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Centro Universitário FEI, São Bernardo do Campo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.fei.edu.br/handle/FEI/309
|
Resumo: |
Um sistema biométrico consiste no uso de informações biológicas ou comportamentais para reconhecimento de indivíduos, aplicadas em propósitos de segurança, acesso automático e ciência forense. Sua confiabilidade depende diretamente da qualidade da captura dos dados e precisão da etapa de processamento de sinal, seja ela um sinal de áudio, vídeo, imagens ou outras sequências temporais. Um dos principais desafios é a captura do sinal para ser utilizado na etapa de reconhecimento, já que algumas modalidades biométricas podem ser comprometidas dependendo da influência de fatores externos. Por exemplo, um sistema de identificação por imagem pode falhar se a luz ambiente não for adequada durante a captura e o desempenho de um sistema de reconhecimento por voz pode ser severamente degradado na presença de ruído ambiente. Até mesmo o simples incorreto posicionamento do usuário perante a localização do sensor biométrico pode ser um fator prejudicial para o processamento das informações e, por este motivo, o uso de modalidades biométricas baseadas em múltiplas características biológicas ou comportamentais, conhecidas como multimodais, vêm sendo aplicadas de forma a conferir maior robustez ao sistema. Esta tese propõe a combinação de características de movimento da região facial, especificamente da região labial, através da aplicação da Transformada Discreta de Cossenos (DCT) aos vetores de movimento de um vídeo MPEG, em conjunto com características extraídas do sinal de voz, resultando em: um método para detecção de atividade de voz e remoção de silêncio; fusão de parâmetros extraídos do movimento e do áudio para finalidade de verificação automática de locutor; um método para extração da região labial baseado na média do movimento ao longo do tempo. A proposta faz uso de parâmetros já presentes em vídeo codificado em MPEG, eliminando a necessidade da etapa do cálculo dos parâmetros de movimento. Os testes biométricos foram realizados com uso da base de dados XM2VTS em diversas condições de relações de sinal-ruído no áudio e avaliados seguindo protocolo Lausanne. O desempenho do sistema foi comparado com diferentes propostas de biometria multimodal, obtendo resultados promissores para utilização em aplicações comerciais. |