Um modelo bayesiano com divergência de Kullback-Leibler estendida para reconhecimento de objetos 3D baseados em múltiplas visões

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Olívio, F.C.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Centro Universitário da FEI, São Bernardo do Campo
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.fei.edu.br/handle/FEI/496
Resumo: Este trabalho apresenta um modelo Bayesiano que combina as características de cor, forma e textura para o reconhecimento de objetos em três dimensões. As interações espaciais ou temporais de longo alcance dessas características permitem modelar a probabilidade de se observar em cada dessas evidências nos objetos com a distância de Kullback-Liebler estendida, que é um conceito recentemente proposto na mecânica estatística. O modelo Bayesiano proposto pode ser usado em diversas aplicações, mas enfatizamos o trabalho cooperativo de diversos observadores para executar a tarefa de reconhecimento tridimensional. Os experimentos com uma base de dado de informações a priori sugerem que o modelo atinge o seu melhor desempenho a partir da inclusão do terceiro observador, indicando resultados promissores