Reconhecimento de atividades humanas utilizando sensores inerciais e aprendizado de máquina
Ano de defesa: | 2024 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Centro Universitário FEI, São Bernardo do Campo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.fei.edu.br/handle/FEI/5530 https://doi.org/10.31414/EE.2024.131877 |
Resumo: | Reconhecimento de atividades humanas, também conhecido como Human Activity Recognition (HAR), tem um papel significativo na vida das pessoas dada a capacidade de prover informações relevantes por meio de pequenos sensores, podendo ser no celular, relógios inteligentes ou até mesmo através de imagens e vídeos. A análise e classificação dos movimentos humanos é alvo de diversos estudos em decorrência de sua ampla utilização nas mais diversas áreas, como por exemplo: saúde, práticas esportivas, bem estar, assistentes tecnológicos, segurança, computação ciente do contexto, realidade virtual e aumentada, dentre outros. O maior desafio atualmente é garantir que tal reconhecimento seja feito localmente em Micro Controller Unit (MCU) com baixo consumo de energia e com baixo tempo de inferência, mantendo os dados de cada pessoa seguro. Diversas propostas para resolver o HAR já foram avaliadas e apresentam resultados excelentes, tipicamente com acurácia superior a 90% quando um número baixo de movimentos (correr, caminhar, subir e descer escadas etc.) é considerado, porém a maioria destes estudos faz uso do processamento externo, em geral usando celulares, para desempenhar as técnicas de reconhecimento, classificação e contexto. Muitos destes estudos e técnicas podem ser ajustados, migrados e empregados nos MCUs graças às recentes melhorias dos frameworks disponíveis, suas quantizações e otimizações, bem como na evolução da capacidade de processamento e densidade de memória disponível nos microcontroladores. Este trabalho explora a comparação entre o emprego e desempenho de reduções de dimensionalidades por meio de Principal Component Analysis (PCA) com as técnicas de aprendizado de máquina como Decision Tree Regression (DTR), Random Forest (RF) e Support Vector Machine (SVM) e de aprendizado profundo utilizando exclusivamente Convolution Neural Network (CNN), ambas aplicadas ao microcontroladore Arm® Cortex® M33 com foco na aplicação de HAR. Outra análise que este estudo traz é a identificação da influência do uso de quantização Post Training Quantization (PTQ) no tempo de inferência, densidade de memória, complexidade e sua relação com o consumo de energia no MCU |