Evapotranspiração de referência usando o IoT e algoritmos de aprendizagem de máquina
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Centro Universitário FEI, São Bernardo do Campo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://doi.org/10.31414/EE.2021.D.131311 https://repositorio.fei.edu.br/handle/FEI/3209 |
Resumo: | A Organização das Nações Unidas para Alimentação e Agricultura (FAO) estima um crescimento populacional que chega a 11.2 bilhões até ano de 2100, o que sem dúvida contribuirá para o crescimento da demanda por produtos agrícolas alimentares e não alimentares, tornando a otimização de recursos hídricos indispensável. Neste contexto, o parâmetro de evapotranspiração de referência determinado pelo método FAOPM destaca-se. Contudo, uma medida precisa necessita de diversos parâmetros climáticos, que podem não estar disponíveis em algumas regiões rurais, neste sentido, uma solução promissora são abordagens que se utilizam da menor quantidade de parâmetros climáticos, que podem ser medidos por satélites e estações meteorológicas da região e modelos de aprendizagem de máquina. Nesta pesquisa os modelos MLP (Multlayer perceptron) e SVM (Support Vector Machines) foram utilizados para modelar a evapotranspiração de referência a partir de dados de satélites e estações meteorológicas sob duas abordagens: a abordagem local, onde os modelos foram treinados e testados em um local de treinamento, e a abordagem regional, onde os modelos treinados no local de treinamento foram aplicados em um local de teste, em dois experimentos: um em uma região de clima temperado e outra em uma região de clima tropical. Os resultados indicam que o modelo MLP se sobressaiu diante ao modelo SVM em todos as simulações realizadas, no qual os modelos treinados com os parâmetros relativos a temperatura e radiação obtiveram as métricas R2 de 0.6568, RMSE de 0.1103 e MAE de 0.0882 para o experimento da região de clima temperado e métricas R2 de 0.7391, RMSE 0.1266 e MAE de 0.1063 para a região de clima tropical na abordagem local, o que demonstra o potencial de uso de apenas estes parâmetros para a modelagem da evapotranspiração de referência. Já na abordagem regional o modelo MLP pode ser aplicado com exito, o qual obteve as métricas R2 de 0.7158, RMSE de 0.1592, e MAE de 0.1428, contudo, no experimento de clima temperado, os resultados da aplicação foram insatisfatórios, demonstrando que para as condições daquele local os modelos não puderam ser aplicados. |