Extração e comparação de características locais e globais para o reconhecimento automático de imagens de face

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Amaral, Vagner do
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Centro Universitário da FEI, São Bernardo do Campo
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.fei.edu.br/handle/FEI/416
Resumo: Pesquisas relacionadas ao reconhecimento de faces sempre receberam ênfase devido a sua aplicabilidade e abrangência. Inicialmente, em razão das limitações tecnológicas, os trabalhos desenvolvidos nesta área empregaram técnicas baseadas em características geométricas (locais). No entanto, com o avanço da capacidade computacional e a exploração de métodos estatísticos, a utilização de informações holísticas (globais) se tornou mais popular e fomentou a criação de diversas metodologias. Consequentemente, surgiram estudos com a intenção de comparar o desempenho das técnicas propostas e os resultados preliminares favoreceram a implementação de modelos holísticos. No entanto, trabalhos subsequentes concluíram que ambas as abordagens, locais e globais, são úteis de acordo com o contexto da aplicação. Este trabalho propõe e implementa uma comparação entre as técnicas Local Binary Pattern (LBP) e Principal Components Analisys (PCA) com o propósito de destacar características particulares de cada método no processo de reconhecimento automático de imagens de faces, utilizando apenas um exemplo de treinamento por pessoa. Os resultados demonstram um bom desempenho da técnica LBP em situações específicas, onde a base de treinamento é formada por indivíduos em pose frontal com expressão facial neutra. Contudo, empregando-se uma base de treinamento com poses e expressões faciais heterogêneas, em um teste leave-one-out, o PCA é mais eficiente. Estes resultados enfatizam conclusões prévias sobre a aplicação de abordagens adequadas ao contexto do problema tratado e permitem uma análise acerca das vantagens e desvantagens de cada método quando utiliza-se imagens de faces pré-processadas e normalizadas espacialmente.