Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Xavier, I. R. R. |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Centro Universitário da FEI, São Bernardo do Campo
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.fei.edu.br/handle/FEI/473
|
Resumo: |
No contexto de reconhecimento automático ou percepção cognitiva de faces, uma etapa importante é o alinhamento das imagens de face de entrada a um atlas de referência para posterior extração multivariada de características. Para alinhar duas imagens de face, pode-se utilizar transformações rígidas e afins que corrigem variações de rotação e escala, porém deformações devido a expressões faciais, por exemplo, podem ser tanto globais quanto locais e de natureza não-linear ou não-rígida. Portanto, em situações desse tipo precisa-se de um método de alinhamento que possa lidar com tais variações. Nas últimas décadas, desenvolveu-se uma técnica de deformação de objetos sólidos, denominada em inglês de Free-Form Deformation, que foi adaptada primeiramente para normalização espacial de imagens médicas e mais recentemente para imagens frontais de face. Paralelamente, técnicas estatísticas de análise multivariada têm sido aplicadas ao contexto de imagens de face, tais como Análise de Componentes Principais (PCA, Principal Components Analysis) e Análise de Discriminantes Lineares (LDA, Linear Discriminant Analysis), para modelagem, reconstrução e interpretação desses padrões. Este estudo teve como objetivo realizar uma análise multivariada de imagens frontais de face normalizadas espacialmente com relação a um atlas de referência. Os resultados mostram que esta abordagem produziu imagens artificiais de faces humanas com realismo promissor, tanto nas direções de maior variação obtidas pelo PCA quanto nas direções mais discriminantes obtidas pelo LDA |