Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
LEITE, M. A. de A. |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/82758
|
Resumo: |
Com a crescente popularidade da World Wide Web mais pessoas têm acesso à informação cujo volume vem expandindo ao longo do tempo. A área de recuperação de informação ganhou um novo desafio visando buscar os recursos pelo significado da informação neles contida. Uma forma de recuperar a informação, pelo seu significado, é pelo uso de uma base de conhecimento que modela os conceitos de um domínio e seus relacionamentos. Atualmente, ontologias têm sido utilizadas para modelar bases de conhecimento. Para tratar com a imprecisão e a incerteza, presentes no conhecimento e no processo de recuperação de informação, são empregadas técnicas da teoria de conjuntos fuzzy. Trabalhos precedentes codificam a base de conhecimento utilizando apenas uma ontologia. Entretanto, uma coleção de documentos pode tratar temas pertencentes a domínios diferentes, expressos por ontologias distintas, que podem estar relacionados. Neste trabalho, uma forma de organização e representação do conhecimento em múltiplas ontologias relacionadas foi investigada e um novo método de expansão de consulta foi desenvolvido. A organização do conhecimento e o método de expansão de consulta foram integrados no modelo fuzzy para recuperação de informação utilizando múltiplas ontologias relacionadas. O desempenho do modelo foi comparado com outro modelo fuzzy para recuperação de informação e com a máquina de busca Lucene do projeto Apache. Em ambos os casos o modelo proposto apresentou uma melhora nas medidas de precisão e cobertura. Palavras-chave: Recuperação de informação fuzzy, Representação do conhecimento, Expansão da consulta, Ontologia. |