Modelo fuzzy para recuperação da informação utilizando múltiplas ontologias relacionadas.

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: LEITE, M. A. de A.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.alice.cnptia.embrapa.br/alice/handle/doc/82758
Resumo: Com a crescente popularidade da World Wide Web mais pessoas têm acesso à informação cujo volume vem expandindo ao longo do tempo. A área de recuperação de informação ganhou um novo desafio visando buscar os recursos pelo significado da informação neles contida. Uma forma de recuperar a informação, pelo seu significado, é pelo uso de uma base de conhecimento que modela os conceitos de um domínio e seus relacionamentos. Atualmente, ontologias têm sido utilizadas para modelar bases de conhecimento. Para tratar com a imprecisão e a incerteza, presentes no conhecimento e no processo de recuperação de informação, são empregadas técnicas da teoria de conjuntos fuzzy. Trabalhos precedentes codificam a base de conhecimento utilizando apenas uma ontologia. Entretanto, uma coleção de documentos pode tratar temas pertencentes a domínios diferentes, expressos por ontologias distintas, que podem estar relacionados. Neste trabalho, uma forma de organização e representação do conhecimento em múltiplas ontologias relacionadas foi investigada e um novo método de expansão de consulta foi desenvolvido. A organização do conhecimento e o método de expansão de consulta foram integrados no modelo fuzzy para recuperação de informação utilizando múltiplas ontologias relacionadas. O desempenho do modelo foi comparado com outro modelo fuzzy para recuperação de informação e com a máquina de busca Lucene do projeto Apache. Em ambos os casos o modelo proposto apresentou uma melhora nas medidas de precisão e cobertura. Palavras-chave: Recuperação de informação fuzzy, Representação do conhecimento, Expansão da consulta, Ontologia.