Detalhes bibliográficos
Ano de defesa: |
2020 |
Autor(a) principal: |
SANTOS, Luiz Fernando dos |
Orientador(a): |
CARVALHO, Carlos Henrique Grohmann de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Link de acesso: |
https://rigeo.cprm.gov.br/handle/doc/21763
|
Resumo: |
Há um aumento da intensidade e frequência de desastres naturais em todo o mundo, especialmente os relacionados aos movimentos de massa (p. ex., deslizamentos), inclusive no Brasil onde vários ocorreram nos últimos anos. O desenvolvimento recente de plataformas e sensores remotos aéreos de coleta de dados, como aeronaves não tripuladas equipados com sensores fotográficos comuns (drones), pode, com um certo nível de planejamento fotogramétrico e processamento de dados, ser usado para entender melhor esses cenários, com resultados positivos na identificação, análise e monitoramento de áreas suscetíveis aos movimentos de massa. O objetivo foi (1) produzir uma extensa e ampla revisão bibliográfica de temas relacionados; (2) o emprego de drones e pontos de controle (GCPs), pela técnica dGNSS, em área suscetível de geodinâmica conhecida (como o Morro Doce, a NW da cidade de São Paulo); (3) uma comparação, por meio de algoritmo apropriado, de dois conjuntos de dados 3D registrados (nuvens de pontos) e gerados a partir de processamento fotogramétrico (SfM-MVS) para detectar alterações topográficas (p. ex., um deslizamento). O primeiro conjunto de imagens, adquirido em 2017, contém um total de 155 imagens e 7 GCPs de <1 cm em precisão XYZ. O segundo, de 2019, compreende 484 imagens e 8 GCPs de <2cm em XY e <4cm em Z. Diante de diferentes arranjos de aquisição de dados (linhas de vôo, altura acima do solo, GCPs) e equipamentos, o processamento de dados e o registro obtiveram a melhor qualidade possível por meio de uma análise da configuração inicial, observações de modelos de câmera, filtragem e otimização (ajustamento por feixe de raios) automatizados via script Python. A seguir, as nuvens densas, resultantes da etapa MVS, foram filtradas de ruídos e pontos acima do solo e depois segmentadas por uma área comum (cobrindo as feições de instabilidade identificadas na encosta). Após, uma filtragem multi-etapas utilizou um algoritmo especializado (Cloth Simulation Filter), as distâncias calculadas para uma superfície/nuvem de referência conhecida (dados LiDAR-ALS) e a remoção manual de pontos resultando em nuvens de pontos comparáveis, livres de objetos (apenas pontos de solo) e com erro de registro de 5cm medido em feições estáveis da encosta (p. ex., afloramentos rochosos). Uma comparação 3D nuvem a nuvem (método M3C2) detectou pequenas mudanças significativas em duas cicatrizes de deslizamento, sugerindo que estas áreas mudaram no intervalo de tempo do estudo, ou, que pontos não-solo ainda estavam presentes apesar da filtragem criteriosa (M3C2 considera a rugosidade das nuvens). Para considerar a origem dos dados (fotogramétrica) e melhorar os resultados, foram incorporados estimativas de precisão dos pontos (M3C2-Precision Maps), resultando em nenhuma alteração significativa detectada e correspondendo ao registro histórico da Defesa Civil local no período. O resultado representa um modelo histórico de mudança mais detalhado do que o monitoramento visual atualmente empregado. A prevenção é um dos principais pilares da gestão de desastres naturais, portanto, os resultados destacam um novo método de prevenção, de última geração e baixo custo, para monitorar movimentos de massa antes que eles ocorram e causem perdas e danos. |