Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor

Bibliographic Details
Main Author: Dall'Agnol, Caroline
Publication Date: 2020
Format: Doctoral thesis
Language: por
Source: Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
Download full: http://repositorio.utfpr.edu.br/jspui/handle/1/32142
Summary: This study aims to improve the techniques for estimates of iteration errors in heat transfer problems. First, a new estimator of iteration error is proposed and, based on the estimates obtained, a method is proposed to improve the iteration error predictions in ranges of iterations where the estimator does not present accurate results. The proposed estimator is an empirical estimator that provides iteration errors estimates based on interest variables convergence rate. Its performance was tested in two one-dimensional equations: Poisson’s equation and advection-diffusion equation, and in a two-dimensional equation: Laplace’s equation. All equations were discretized using the Finite Difference Method (FDM) in uniform meshes. The systems of equations resulting from the discretizations were solved by the TriDiagonal Matrix Algorithm solver (TDMA), PentaDiagonal Matrix Algorithm solver (PDMA) and Gauss-Seidel solver (GS). The TDMA solver was used to obtain the one-dimensional equations direct solution, the PDMA solver to obtain the bidimensional equation reference solution and the GS solver to estimate errors at each iteration. The Laplace equation was solved with and without the multigrid method associated with GS to accelerate convergence. The variables chosen to evaluate the results were: the function value at the central point of the domain (local), the derivative at the right boundary (local) and the function mean value (global). The codes were implemented in Fortran 95 language, with quadruple precision, in the Microsoft Visual Studio Community 2013. The proposed estimator was evaluated with respect to its accuracy and reliability and was compared to the main iteration error estimators found in the literature and it was observed that, for all problems and variables, the estimators have similar results. The iterations initial ranges and the final ranges were those that presented the least accurate estimates. Thus, in order to improve the estimates obtained, first it was delimited, for each variable, the iterations ranges in which the estimator presents the best error estimates. To that end, the criteria were: geometric series convergence that represents the proposed estimator, monotonic convergence and the interference of round-off errors. After identifying the interval with the best estimates, these same estimates were used to obtain solutions with reduced iteration errors. The best estimate range last solution with reduced iteration errors was used to recalculate the predictions. Through this procedure it was possible to improve the iteration initial range estimates. Combining the error estimates with the estimator and those improved by the proposed method, a hybrid procedure is obtained to estimate the iteration error throughout the iterative cycle.
id UTFPR-12_e5acd67683dc8f94c8c99f71868a5b96
oai_identifier_str oai:repositorio.utfpr.edu.br:1/32142
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calorProposal of a hybrid procedure to estimate and reduce the iteration error in heat transfer problemsDiferenças finitasFluidodinâmica computacionalCalor - TransmissãoFinite differencesComputational fluid dynamicsHeat - TransmissionCNPQ::ENGENHARIAS::ENGENHARIA MECANICAENGENHARIA MECÂNICA (40001016040P5)This study aims to improve the techniques for estimates of iteration errors in heat transfer problems. First, a new estimator of iteration error is proposed and, based on the estimates obtained, a method is proposed to improve the iteration error predictions in ranges of iterations where the estimator does not present accurate results. The proposed estimator is an empirical estimator that provides iteration errors estimates based on interest variables convergence rate. Its performance was tested in two one-dimensional equations: Poisson’s equation and advection-diffusion equation, and in a two-dimensional equation: Laplace’s equation. All equations were discretized using the Finite Difference Method (FDM) in uniform meshes. The systems of equations resulting from the discretizations were solved by the TriDiagonal Matrix Algorithm solver (TDMA), PentaDiagonal Matrix Algorithm solver (PDMA) and Gauss-Seidel solver (GS). The TDMA solver was used to obtain the one-dimensional equations direct solution, the PDMA solver to obtain the bidimensional equation reference solution and the GS solver to estimate errors at each iteration. The Laplace equation was solved with and without the multigrid method associated with GS to accelerate convergence. The variables chosen to evaluate the results were: the function value at the central point of the domain (local), the derivative at the right boundary (local) and the function mean value (global). The codes were implemented in Fortran 95 language, with quadruple precision, in the Microsoft Visual Studio Community 2013. The proposed estimator was evaluated with respect to its accuracy and reliability and was compared to the main iteration error estimators found in the literature and it was observed that, for all problems and variables, the estimators have similar results. The iterations initial ranges and the final ranges were those that presented the least accurate estimates. Thus, in order to improve the estimates obtained, first it was delimited, for each variable, the iterations ranges in which the estimator presents the best error estimates. To that end, the criteria were: geometric series convergence that represents the proposed estimator, monotonic convergence and the interference of round-off errors. After identifying the interval with the best estimates, these same estimates were used to obtain solutions with reduced iteration errors. The best estimate range last solution with reduced iteration errors was used to recalculate the predictions. Through this procedure it was possible to improve the iteration initial range estimates. Combining the error estimates with the estimator and those improved by the proposed method, a hybrid procedure is obtained to estimate the iteration error throughout the iterative cycle.Este trabalho tem como objetivo principal aperfeiçoar as técnicas de estimativas de erros de iteração em problemas de transferência de calor. Primeiro, propõe-se um novo estimador para erros de iteração e, a partir das estimativas obtidas, propõe-se um método para melhorar as previsões de erros de iteração em faixas de iterações em que o estimador não apresenta resultados acurados. O estimador proposto fornece previsões dos erros de iteração baseadas na taxa de convergência da variável de interesse. Seu desempenho foi testado em duas equações unidimensionais: equação de Poisson e equação de advecção-difusão, e uma bidimensional: equação de Laplace. As equações foram discretizadas por meio do Método das Diferenças Finitas (MDF) e resolvidas em malhas uniformes. Os sistemas de equações resultantes das discretizações foram resolvidos pelos solvers TriDiagonal Matrix Algorithm (TDMA), PentaDiagonal Matrix Algorithm (PDMA) e Gauss-Seidel (GS). O solver TDMA foi utilizado para obtenção da solução direta das equações unidimensionais, o solver PDMA para obtenção da solução de referência da equação bidimensional e o solver GS para estimar os erros a cada iteração. A equação de Laplace foi resolvida com/sem o método multigrid associado ao GS para aceleração da convergência. As variáveis escolhidas para análise dos resultados foram: o valor da função no ponto central do domínio (local), derivadas nos contornos (local) e valor médio da função (global). Os códigos foram implementados na linguagem Fortran 95, com precisão quádrupla, no ambiente Microsoft Visual Studio 2013. O estimador proposto foi avaliado com relação à sua acurácia e confiabilidade e comparado aos principais estimadores de erros de iteração presentes na literatura e observou-se que, para todos os problemas e variáveis analisadas, os estimadores possuem resultados semelhantes. As faixas iniciais e as faixas finais de iterações foram as que apresentaram as estimativas menos acuradas. Assim, a fim de melhorar as estimativas da faixa inicial, primeiramente, foram delimitadas, para cada variável, as faixas de iterações em que o estimador apresenta as melhores estimativas de erros. Para isso, os critérios utilizados foram: convergência da série geométrica que representa o estimador proposto, convergência monotônica da taxa de convergência e a interferência dos erros de arredondamento. Após identificado o intervalo com as melhores estimativas, essas mesmas estimativas foram utilizadas para se obter soluções com erros reduzidos de iteração, chamadas de soluções corrigidas. A última solução corrigida do melhor intervalo de estimativas foi utilizada para recalcular as previsões. Por meio desse método foi possível melhorar as estimativas da faixa inicial de iterações. Combinando-se as previsões de erro obtidas com o estimador e as previsões melhoradas por meio do método proposto, obtém-se um procedimento híbrido para estimativa do erro de iteração em todo o ciclo iterativo.Universidade Federal do ParanáDois VizinhosBrasilPrograma de Pós-Graduação em Engenharia MecânicaUFPRMarchi, Carlos Henriquehttps://orcid.org/0000-0002-1195-5377http://lattes.cnpq.br/8251643344377056Moro, Diego Fernandohttps://orcid.org/0000-0002-7912-1686http://lattes.cnpq.br/0240829550599323Junqueira, Silvio Luiz de Mellohttps://orcid.org/0000-0001-5935-4266http://lattes.cnpq.br/2213804390733564Oliveira, Saulo Pomponethttps://orcid.org/0000-0001-8227-8230http://lattes.cnpq.br/3048153332110327Marchi, Carlos Henriquehttps://orcid.org/0000-0002-1195-5377http://lattes.cnpq.br/8251643344377056Mariani, Viviana Coccohttps://orcid.org/0000-0003-2490-4568http://lattes.cnpq.br/1851884209044569Dall'Agnol, Caroline2023-08-18T13:05:55Z2024-02-012023-08-18T13:05:55Z2020-07-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfDALL'AGNOL, Caroline. Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor. 2020. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal do Paraná, Curitiba, 2020.http://repositorio.utfpr.edu.br/jspui/handle/1/32142porinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2023-08-19T06:07:23Zoai:repositorio.utfpr.edu.br:1/32142Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2023-08-19T06:07:23Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor
Proposal of a hybrid procedure to estimate and reduce the iteration error in heat transfer problems
title Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor
spellingShingle Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor
Dall'Agnol, Caroline
Diferenças finitas
Fluidodinâmica computacional
Calor - Transmissão
Finite differences
Computational fluid dynamics
Heat - Transmission
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA
ENGENHARIA MECÂNICA (40001016040P5)
title_short Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor
title_full Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor
title_fullStr Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor
title_full_unstemmed Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor
title_sort Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor
author Dall'Agnol, Caroline
author_facet Dall'Agnol, Caroline
author_role author
dc.contributor.none.fl_str_mv Marchi, Carlos Henrique
https://orcid.org/0000-0002-1195-5377
http://lattes.cnpq.br/8251643344377056
Moro, Diego Fernando
https://orcid.org/0000-0002-7912-1686
http://lattes.cnpq.br/0240829550599323
Junqueira, Silvio Luiz de Mello
https://orcid.org/0000-0001-5935-4266
http://lattes.cnpq.br/2213804390733564
Oliveira, Saulo Pomponet
https://orcid.org/0000-0001-8227-8230
http://lattes.cnpq.br/3048153332110327
Marchi, Carlos Henrique
https://orcid.org/0000-0002-1195-5377
http://lattes.cnpq.br/8251643344377056
Mariani, Viviana Cocco
https://orcid.org/0000-0003-2490-4568
http://lattes.cnpq.br/1851884209044569
dc.contributor.author.fl_str_mv Dall'Agnol, Caroline
dc.subject.por.fl_str_mv Diferenças finitas
Fluidodinâmica computacional
Calor - Transmissão
Finite differences
Computational fluid dynamics
Heat - Transmission
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA
ENGENHARIA MECÂNICA (40001016040P5)
topic Diferenças finitas
Fluidodinâmica computacional
Calor - Transmissão
Finite differences
Computational fluid dynamics
Heat - Transmission
CNPQ::ENGENHARIAS::ENGENHARIA MECANICA
ENGENHARIA MECÂNICA (40001016040P5)
description This study aims to improve the techniques for estimates of iteration errors in heat transfer problems. First, a new estimator of iteration error is proposed and, based on the estimates obtained, a method is proposed to improve the iteration error predictions in ranges of iterations where the estimator does not present accurate results. The proposed estimator is an empirical estimator that provides iteration errors estimates based on interest variables convergence rate. Its performance was tested in two one-dimensional equations: Poisson’s equation and advection-diffusion equation, and in a two-dimensional equation: Laplace’s equation. All equations were discretized using the Finite Difference Method (FDM) in uniform meshes. The systems of equations resulting from the discretizations were solved by the TriDiagonal Matrix Algorithm solver (TDMA), PentaDiagonal Matrix Algorithm solver (PDMA) and Gauss-Seidel solver (GS). The TDMA solver was used to obtain the one-dimensional equations direct solution, the PDMA solver to obtain the bidimensional equation reference solution and the GS solver to estimate errors at each iteration. The Laplace equation was solved with and without the multigrid method associated with GS to accelerate convergence. The variables chosen to evaluate the results were: the function value at the central point of the domain (local), the derivative at the right boundary (local) and the function mean value (global). The codes were implemented in Fortran 95 language, with quadruple precision, in the Microsoft Visual Studio Community 2013. The proposed estimator was evaluated with respect to its accuracy and reliability and was compared to the main iteration error estimators found in the literature and it was observed that, for all problems and variables, the estimators have similar results. The iterations initial ranges and the final ranges were those that presented the least accurate estimates. Thus, in order to improve the estimates obtained, first it was delimited, for each variable, the iterations ranges in which the estimator presents the best error estimates. To that end, the criteria were: geometric series convergence that represents the proposed estimator, monotonic convergence and the interference of round-off errors. After identifying the interval with the best estimates, these same estimates were used to obtain solutions with reduced iteration errors. The best estimate range last solution with reduced iteration errors was used to recalculate the predictions. Through this procedure it was possible to improve the iteration initial range estimates. Combining the error estimates with the estimator and those improved by the proposed method, a hybrid procedure is obtained to estimate the iteration error throughout the iterative cycle.
publishDate 2020
dc.date.none.fl_str_mv 2020-07-29
2023-08-18T13:05:55Z
2023-08-18T13:05:55Z
2024-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv DALL'AGNOL, Caroline. Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor. 2020. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal do Paraná, Curitiba, 2020.
http://repositorio.utfpr.edu.br/jspui/handle/1/32142
identifier_str_mv DALL'AGNOL, Caroline. Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor. 2020. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal do Paraná, Curitiba, 2020.
url http://repositorio.utfpr.edu.br/jspui/handle/1/32142
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Paraná
Dois Vizinhos
Brasil
Programa de Pós-Graduação em Engenharia Mecânica
UFPR
publisher.none.fl_str_mv Universidade Federal do Paraná
Dois Vizinhos
Brasil
Programa de Pós-Graduação em Engenharia Mecânica
UFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br || sibi@utfpr.edu.br
_version_ 1850498074245332992