Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor
| Main Author: | |
|---|---|
| Publication Date: | 2020 |
| Format: | Doctoral thesis |
| Language: | por |
| Source: | Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
| Download full: | http://repositorio.utfpr.edu.br/jspui/handle/1/32142 |
Summary: | This study aims to improve the techniques for estimates of iteration errors in heat transfer problems. First, a new estimator of iteration error is proposed and, based on the estimates obtained, a method is proposed to improve the iteration error predictions in ranges of iterations where the estimator does not present accurate results. The proposed estimator is an empirical estimator that provides iteration errors estimates based on interest variables convergence rate. Its performance was tested in two one-dimensional equations: Poisson’s equation and advection-diffusion equation, and in a two-dimensional equation: Laplace’s equation. All equations were discretized using the Finite Difference Method (FDM) in uniform meshes. The systems of equations resulting from the discretizations were solved by the TriDiagonal Matrix Algorithm solver (TDMA), PentaDiagonal Matrix Algorithm solver (PDMA) and Gauss-Seidel solver (GS). The TDMA solver was used to obtain the one-dimensional equations direct solution, the PDMA solver to obtain the bidimensional equation reference solution and the GS solver to estimate errors at each iteration. The Laplace equation was solved with and without the multigrid method associated with GS to accelerate convergence. The variables chosen to evaluate the results were: the function value at the central point of the domain (local), the derivative at the right boundary (local) and the function mean value (global). The codes were implemented in Fortran 95 language, with quadruple precision, in the Microsoft Visual Studio Community 2013. The proposed estimator was evaluated with respect to its accuracy and reliability and was compared to the main iteration error estimators found in the literature and it was observed that, for all problems and variables, the estimators have similar results. The iterations initial ranges and the final ranges were those that presented the least accurate estimates. Thus, in order to improve the estimates obtained, first it was delimited, for each variable, the iterations ranges in which the estimator presents the best error estimates. To that end, the criteria were: geometric series convergence that represents the proposed estimator, monotonic convergence and the interference of round-off errors. After identifying the interval with the best estimates, these same estimates were used to obtain solutions with reduced iteration errors. The best estimate range last solution with reduced iteration errors was used to recalculate the predictions. Through this procedure it was possible to improve the iteration initial range estimates. Combining the error estimates with the estimator and those improved by the proposed method, a hybrid procedure is obtained to estimate the iteration error throughout the iterative cycle. |
| id |
UTFPR-12_e5acd67683dc8f94c8c99f71868a5b96 |
|---|---|
| oai_identifier_str |
oai:repositorio.utfpr.edu.br:1/32142 |
| network_acronym_str |
UTFPR-12 |
| network_name_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
| repository_id_str |
|
| spelling |
Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calorProposal of a hybrid procedure to estimate and reduce the iteration error in heat transfer problemsDiferenças finitasFluidodinâmica computacionalCalor - TransmissãoFinite differencesComputational fluid dynamicsHeat - TransmissionCNPQ::ENGENHARIAS::ENGENHARIA MECANICAENGENHARIA MECÂNICA (40001016040P5)This study aims to improve the techniques for estimates of iteration errors in heat transfer problems. First, a new estimator of iteration error is proposed and, based on the estimates obtained, a method is proposed to improve the iteration error predictions in ranges of iterations where the estimator does not present accurate results. The proposed estimator is an empirical estimator that provides iteration errors estimates based on interest variables convergence rate. Its performance was tested in two one-dimensional equations: Poisson’s equation and advection-diffusion equation, and in a two-dimensional equation: Laplace’s equation. All equations were discretized using the Finite Difference Method (FDM) in uniform meshes. The systems of equations resulting from the discretizations were solved by the TriDiagonal Matrix Algorithm solver (TDMA), PentaDiagonal Matrix Algorithm solver (PDMA) and Gauss-Seidel solver (GS). The TDMA solver was used to obtain the one-dimensional equations direct solution, the PDMA solver to obtain the bidimensional equation reference solution and the GS solver to estimate errors at each iteration. The Laplace equation was solved with and without the multigrid method associated with GS to accelerate convergence. The variables chosen to evaluate the results were: the function value at the central point of the domain (local), the derivative at the right boundary (local) and the function mean value (global). The codes were implemented in Fortran 95 language, with quadruple precision, in the Microsoft Visual Studio Community 2013. The proposed estimator was evaluated with respect to its accuracy and reliability and was compared to the main iteration error estimators found in the literature and it was observed that, for all problems and variables, the estimators have similar results. The iterations initial ranges and the final ranges were those that presented the least accurate estimates. Thus, in order to improve the estimates obtained, first it was delimited, for each variable, the iterations ranges in which the estimator presents the best error estimates. To that end, the criteria were: geometric series convergence that represents the proposed estimator, monotonic convergence and the interference of round-off errors. After identifying the interval with the best estimates, these same estimates were used to obtain solutions with reduced iteration errors. The best estimate range last solution with reduced iteration errors was used to recalculate the predictions. Through this procedure it was possible to improve the iteration initial range estimates. Combining the error estimates with the estimator and those improved by the proposed method, a hybrid procedure is obtained to estimate the iteration error throughout the iterative cycle.Este trabalho tem como objetivo principal aperfeiçoar as técnicas de estimativas de erros de iteração em problemas de transferência de calor. Primeiro, propõe-se um novo estimador para erros de iteração e, a partir das estimativas obtidas, propõe-se um método para melhorar as previsões de erros de iteração em faixas de iterações em que o estimador não apresenta resultados acurados. O estimador proposto fornece previsões dos erros de iteração baseadas na taxa de convergência da variável de interesse. Seu desempenho foi testado em duas equações unidimensionais: equação de Poisson e equação de advecção-difusão, e uma bidimensional: equação de Laplace. As equações foram discretizadas por meio do Método das Diferenças Finitas (MDF) e resolvidas em malhas uniformes. Os sistemas de equações resultantes das discretizações foram resolvidos pelos solvers TriDiagonal Matrix Algorithm (TDMA), PentaDiagonal Matrix Algorithm (PDMA) e Gauss-Seidel (GS). O solver TDMA foi utilizado para obtenção da solução direta das equações unidimensionais, o solver PDMA para obtenção da solução de referência da equação bidimensional e o solver GS para estimar os erros a cada iteração. A equação de Laplace foi resolvida com/sem o método multigrid associado ao GS para aceleração da convergência. As variáveis escolhidas para análise dos resultados foram: o valor da função no ponto central do domínio (local), derivadas nos contornos (local) e valor médio da função (global). Os códigos foram implementados na linguagem Fortran 95, com precisão quádrupla, no ambiente Microsoft Visual Studio 2013. O estimador proposto foi avaliado com relação à sua acurácia e confiabilidade e comparado aos principais estimadores de erros de iteração presentes na literatura e observou-se que, para todos os problemas e variáveis analisadas, os estimadores possuem resultados semelhantes. As faixas iniciais e as faixas finais de iterações foram as que apresentaram as estimativas menos acuradas. Assim, a fim de melhorar as estimativas da faixa inicial, primeiramente, foram delimitadas, para cada variável, as faixas de iterações em que o estimador apresenta as melhores estimativas de erros. Para isso, os critérios utilizados foram: convergência da série geométrica que representa o estimador proposto, convergência monotônica da taxa de convergência e a interferência dos erros de arredondamento. Após identificado o intervalo com as melhores estimativas, essas mesmas estimativas foram utilizadas para se obter soluções com erros reduzidos de iteração, chamadas de soluções corrigidas. A última solução corrigida do melhor intervalo de estimativas foi utilizada para recalcular as previsões. Por meio desse método foi possível melhorar as estimativas da faixa inicial de iterações. Combinando-se as previsões de erro obtidas com o estimador e as previsões melhoradas por meio do método proposto, obtém-se um procedimento híbrido para estimativa do erro de iteração em todo o ciclo iterativo.Universidade Federal do ParanáDois VizinhosBrasilPrograma de Pós-Graduação em Engenharia MecânicaUFPRMarchi, Carlos Henriquehttps://orcid.org/0000-0002-1195-5377http://lattes.cnpq.br/8251643344377056Moro, Diego Fernandohttps://orcid.org/0000-0002-7912-1686http://lattes.cnpq.br/0240829550599323Junqueira, Silvio Luiz de Mellohttps://orcid.org/0000-0001-5935-4266http://lattes.cnpq.br/2213804390733564Oliveira, Saulo Pomponethttps://orcid.org/0000-0001-8227-8230http://lattes.cnpq.br/3048153332110327Marchi, Carlos Henriquehttps://orcid.org/0000-0002-1195-5377http://lattes.cnpq.br/8251643344377056Mariani, Viviana Coccohttps://orcid.org/0000-0003-2490-4568http://lattes.cnpq.br/1851884209044569Dall'Agnol, Caroline2023-08-18T13:05:55Z2024-02-012023-08-18T13:05:55Z2020-07-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfDALL'AGNOL, Caroline. Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor. 2020. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal do Paraná, Curitiba, 2020.http://repositorio.utfpr.edu.br/jspui/handle/1/32142porinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2023-08-19T06:07:23Zoai:repositorio.utfpr.edu.br:1/32142Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2023-08-19T06:07:23Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false |
| dc.title.none.fl_str_mv |
Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor Proposal of a hybrid procedure to estimate and reduce the iteration error in heat transfer problems |
| title |
Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor |
| spellingShingle |
Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor Dall'Agnol, Caroline Diferenças finitas Fluidodinâmica computacional Calor - Transmissão Finite differences Computational fluid dynamics Heat - Transmission CNPQ::ENGENHARIAS::ENGENHARIA MECANICA ENGENHARIA MECÂNICA (40001016040P5) |
| title_short |
Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor |
| title_full |
Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor |
| title_fullStr |
Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor |
| title_full_unstemmed |
Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor |
| title_sort |
Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor |
| author |
Dall'Agnol, Caroline |
| author_facet |
Dall'Agnol, Caroline |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Marchi, Carlos Henrique https://orcid.org/0000-0002-1195-5377 http://lattes.cnpq.br/8251643344377056 Moro, Diego Fernando https://orcid.org/0000-0002-7912-1686 http://lattes.cnpq.br/0240829550599323 Junqueira, Silvio Luiz de Mello https://orcid.org/0000-0001-5935-4266 http://lattes.cnpq.br/2213804390733564 Oliveira, Saulo Pomponet https://orcid.org/0000-0001-8227-8230 http://lattes.cnpq.br/3048153332110327 Marchi, Carlos Henrique https://orcid.org/0000-0002-1195-5377 http://lattes.cnpq.br/8251643344377056 Mariani, Viviana Cocco https://orcid.org/0000-0003-2490-4568 http://lattes.cnpq.br/1851884209044569 |
| dc.contributor.author.fl_str_mv |
Dall'Agnol, Caroline |
| dc.subject.por.fl_str_mv |
Diferenças finitas Fluidodinâmica computacional Calor - Transmissão Finite differences Computational fluid dynamics Heat - Transmission CNPQ::ENGENHARIAS::ENGENHARIA MECANICA ENGENHARIA MECÂNICA (40001016040P5) |
| topic |
Diferenças finitas Fluidodinâmica computacional Calor - Transmissão Finite differences Computational fluid dynamics Heat - Transmission CNPQ::ENGENHARIAS::ENGENHARIA MECANICA ENGENHARIA MECÂNICA (40001016040P5) |
| description |
This study aims to improve the techniques for estimates of iteration errors in heat transfer problems. First, a new estimator of iteration error is proposed and, based on the estimates obtained, a method is proposed to improve the iteration error predictions in ranges of iterations where the estimator does not present accurate results. The proposed estimator is an empirical estimator that provides iteration errors estimates based on interest variables convergence rate. Its performance was tested in two one-dimensional equations: Poisson’s equation and advection-diffusion equation, and in a two-dimensional equation: Laplace’s equation. All equations were discretized using the Finite Difference Method (FDM) in uniform meshes. The systems of equations resulting from the discretizations were solved by the TriDiagonal Matrix Algorithm solver (TDMA), PentaDiagonal Matrix Algorithm solver (PDMA) and Gauss-Seidel solver (GS). The TDMA solver was used to obtain the one-dimensional equations direct solution, the PDMA solver to obtain the bidimensional equation reference solution and the GS solver to estimate errors at each iteration. The Laplace equation was solved with and without the multigrid method associated with GS to accelerate convergence. The variables chosen to evaluate the results were: the function value at the central point of the domain (local), the derivative at the right boundary (local) and the function mean value (global). The codes were implemented in Fortran 95 language, with quadruple precision, in the Microsoft Visual Studio Community 2013. The proposed estimator was evaluated with respect to its accuracy and reliability and was compared to the main iteration error estimators found in the literature and it was observed that, for all problems and variables, the estimators have similar results. The iterations initial ranges and the final ranges were those that presented the least accurate estimates. Thus, in order to improve the estimates obtained, first it was delimited, for each variable, the iterations ranges in which the estimator presents the best error estimates. To that end, the criteria were: geometric series convergence that represents the proposed estimator, monotonic convergence and the interference of round-off errors. After identifying the interval with the best estimates, these same estimates were used to obtain solutions with reduced iteration errors. The best estimate range last solution with reduced iteration errors was used to recalculate the predictions. Through this procedure it was possible to improve the iteration initial range estimates. Combining the error estimates with the estimator and those improved by the proposed method, a hybrid procedure is obtained to estimate the iteration error throughout the iterative cycle. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-07-29 2023-08-18T13:05:55Z 2023-08-18T13:05:55Z 2024-02-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
DALL'AGNOL, Caroline. Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor. 2020. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal do Paraná, Curitiba, 2020. http://repositorio.utfpr.edu.br/jspui/handle/1/32142 |
| identifier_str_mv |
DALL'AGNOL, Caroline. Proposta de um procedimento híbrido para estimar e reduzir o erro de iteração em problemas de transferência de calor. 2020. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal do Paraná, Curitiba, 2020. |
| url |
http://repositorio.utfpr.edu.br/jspui/handle/1/32142 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Paraná Dois Vizinhos Brasil Programa de Pós-Graduação em Engenharia Mecânica UFPR |
| publisher.none.fl_str_mv |
Universidade Federal do Paraná Dois Vizinhos Brasil Programa de Pós-Graduação em Engenharia Mecânica UFPR |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) instname:Universidade Tecnológica Federal do Paraná (UTFPR) instacron:UTFPR |
| instname_str |
Universidade Tecnológica Federal do Paraná (UTFPR) |
| instacron_str |
UTFPR |
| institution |
UTFPR |
| reponame_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
| collection |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
| repository.name.fl_str_mv |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR) |
| repository.mail.fl_str_mv |
riut@utfpr.edu.br || sibi@utfpr.edu.br |
| _version_ |
1850498074245332992 |