Railway traffic management: simulation and heuristic optimization
| Main Author: | |
|---|---|
| Publication Date: | 2021 |
| Format: | Master thesis |
| Language: | eng |
| Source: | Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
| Download full: | http://repositorio.utfpr.edu.br/jspui/handle/1/25058 |
Summary: | The railroad operations often require planning on the routing of the trains in order to comply with physical restrictions (like single-track operations) while handling priorities on crossings and overtakes, among others. In order to facilitate the route design, some auxiliary tools were made. This project aims to create an open-source simulation tool for railroad routing and perform an optimization based on two bio-inspired metaheuristics (Genetic Algorithm - GA and Particle Swarm Optimization - PSO) and another randomaction controller (RND). A literature review about the historical context of railroads over the world and mainly in Brazil is made, from where the routes used for comparisons are based. The controllers’ results are later compared over the best solution cost, the total number of successful solutions, total execution time, and the cost evolution per epoch. A Wilcoxon signed-rank test is executed for each possible pair of controllers in order to determine the statistical difference of the resulting data-sets. The obtained results suggests that the RND controller performs better in the evaluated scenarios, having the faster execution time on both scenarios and achieving the best global solution cost in the harder one. The tool also outputs a video presenting the synoptic panel with the entire execution of the simulation, allowing an easy audition and debugging of the solution. It was built using Python in a Docker container so it can run under different platforms and architectures, being hosted on GitHub and available for further public contributions after the registry process. |
| id |
UTFPR-12_a5b55ca3fc6c44dbd820c8d69f8c0305 |
|---|---|
| oai_identifier_str |
oai:repositorio.utfpr.edu.br:1/25058 |
| network_acronym_str |
UTFPR-12 |
| network_name_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
| repository_id_str |
|
| spelling |
Railway traffic management: simulation and heuristic optimizationControle de tráfego ferroviário: simulação e otimização heurísticaFerroviasTransportes - PlanejamentoLevantamentos de rotasSimulação (Computadores)HeurísticaRailroadsTransportation - PlanningRoute surveyingComputer simulationHeuristicCNPQ::ENGENHARIAS::ENGENHARIA ELETRICAEngenharia/Tecnologia/GestãoThe railroad operations often require planning on the routing of the trains in order to comply with physical restrictions (like single-track operations) while handling priorities on crossings and overtakes, among others. In order to facilitate the route design, some auxiliary tools were made. This project aims to create an open-source simulation tool for railroad routing and perform an optimization based on two bio-inspired metaheuristics (Genetic Algorithm - GA and Particle Swarm Optimization - PSO) and another randomaction controller (RND). A literature review about the historical context of railroads over the world and mainly in Brazil is made, from where the routes used for comparisons are based. The controllers’ results are later compared over the best solution cost, the total number of successful solutions, total execution time, and the cost evolution per epoch. A Wilcoxon signed-rank test is executed for each possible pair of controllers in order to determine the statistical difference of the resulting data-sets. The obtained results suggests that the RND controller performs better in the evaluated scenarios, having the faster execution time on both scenarios and achieving the best global solution cost in the harder one. The tool also outputs a video presenting the synoptic panel with the entire execution of the simulation, allowing an easy audition and debugging of the solution. It was built using Python in a Docker container so it can run under different platforms and architectures, being hosted on GitHub and available for further public contributions after the registry process.As operações ferroviárias comumente requerem um planejamento das rotas dos trens de modo a cumprir com restrições físicas (como operações em linhas singelas) enquanto gerencia prioridades em cruzamentos e ultrapassagens, entre outros. De modo a facilitar o desenho das rotas, algumas ferramentas auxiliares foram construídas. Estre projeto visa criar uma ferramenta de simulação de código aberto para roteamento ferroviário, aplicando uma otimização baseada em duas meta-heurísticas bio-inspiradas (Algoritmo Genético e Otimização por Nuvem de Partículas) e um outro controlador baseado em ações aleatórias. Uma revisão de literatura sobre o contexto histórico das ferrovias ao redor do mundo e principalmente no Brasil é realizada, de onde as rotas utilizadas para comparação são baseadas. Os resultados dos controladores são depois comparados sobre o melhor custo de simulação, o número total de simulações bem-sucedidas, tempo total de execução e a evolução do custo por época. Um teste de Wilcoxon pareado é executado para cada possível par de controladores de modo a determinar a diferença estatística entre os conjuntos de dados. Os resultados obtidos sugerem que o controlador RND se sai melhor nos cenários avaliados, obtendo o tempo de execução mais curto em ambos os cenários e alcançando o melhor custo de simulação global no mais difícil. A ferramenta também exporta um vídeo apresentando o painel sinóptico com toda a execução da simulação, permitindo um fácil teste e depuração da solução. Ela foi construída utilizando Python em um contêiner Docker de modo a ser executada em diferentes plataformas e arquiteturas, sendo hospedado no GitHub e disponível publicamente para futuras contribuições.Universidade Tecnológica Federal do ParanáPonta GrossaBrasilPrograma de Pós-Graduação em Engenharia ElétricaUTFPRCorrêa, Fernanda Cristinahttps://orcid.org/0000-0003-4907-0395http://lattes.cnpq.br/1495216809511536Siqueira, Hugo Valadareshttps://orcid.org/0000-0002-1278-4602http://lattes.cnpq.br/6904980376005290Corrêa, Fernanda Cristinahttps://orcid.org/0000-0003-4907-0395http://lattes.cnpq.br/1495216809511536Siqueira, Hugo Valadareshttps://orcid.org/0000-0002-1278-4602http://lattes.cnpq.br/6904980376005290Eckert, Jony Javorski Eckerthttp://orcid.org/0000-0002-5137-8041http://lattes.cnpq.br/5343034796494955Martins, Marcella Scoczynski Ribeirohttps://orcid.org/0000-0002-5716-4968http://lattes.cnpq.br/5212122361603572Silva, Fernando Augusto Constantino da2021-05-27T21:14:28Z2021-05-27T21:14:28Z2021-03-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSILVA, Fernando Augusto Constantino da. Railway traffic management: simulation and heuristic optimization. 2021. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2021.http://repositorio.utfpr.edu.br/jspui/handle/1/25058enghttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2021-05-28T06:12:03Zoai:repositorio.utfpr.edu.br:1/25058Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2021-05-28T06:12:03Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false |
| dc.title.none.fl_str_mv |
Railway traffic management: simulation and heuristic optimization Controle de tráfego ferroviário: simulação e otimização heurística |
| title |
Railway traffic management: simulation and heuristic optimization |
| spellingShingle |
Railway traffic management: simulation and heuristic optimization Silva, Fernando Augusto Constantino da Ferrovias Transportes - Planejamento Levantamentos de rotas Simulação (Computadores) Heurística Railroads Transportation - Planning Route surveying Computer simulation Heuristic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Engenharia/Tecnologia/Gestão |
| title_short |
Railway traffic management: simulation and heuristic optimization |
| title_full |
Railway traffic management: simulation and heuristic optimization |
| title_fullStr |
Railway traffic management: simulation and heuristic optimization |
| title_full_unstemmed |
Railway traffic management: simulation and heuristic optimization |
| title_sort |
Railway traffic management: simulation and heuristic optimization |
| author |
Silva, Fernando Augusto Constantino da |
| author_facet |
Silva, Fernando Augusto Constantino da |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Corrêa, Fernanda Cristina https://orcid.org/0000-0003-4907-0395 http://lattes.cnpq.br/1495216809511536 Siqueira, Hugo Valadares https://orcid.org/0000-0002-1278-4602 http://lattes.cnpq.br/6904980376005290 Corrêa, Fernanda Cristina https://orcid.org/0000-0003-4907-0395 http://lattes.cnpq.br/1495216809511536 Siqueira, Hugo Valadares https://orcid.org/0000-0002-1278-4602 http://lattes.cnpq.br/6904980376005290 Eckert, Jony Javorski Eckert http://orcid.org/0000-0002-5137-8041 http://lattes.cnpq.br/5343034796494955 Martins, Marcella Scoczynski Ribeiro https://orcid.org/0000-0002-5716-4968 http://lattes.cnpq.br/5212122361603572 |
| dc.contributor.author.fl_str_mv |
Silva, Fernando Augusto Constantino da |
| dc.subject.por.fl_str_mv |
Ferrovias Transportes - Planejamento Levantamentos de rotas Simulação (Computadores) Heurística Railroads Transportation - Planning Route surveying Computer simulation Heuristic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Engenharia/Tecnologia/Gestão |
| topic |
Ferrovias Transportes - Planejamento Levantamentos de rotas Simulação (Computadores) Heurística Railroads Transportation - Planning Route surveying Computer simulation Heuristic CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA Engenharia/Tecnologia/Gestão |
| description |
The railroad operations often require planning on the routing of the trains in order to comply with physical restrictions (like single-track operations) while handling priorities on crossings and overtakes, among others. In order to facilitate the route design, some auxiliary tools were made. This project aims to create an open-source simulation tool for railroad routing and perform an optimization based on two bio-inspired metaheuristics (Genetic Algorithm - GA and Particle Swarm Optimization - PSO) and another randomaction controller (RND). A literature review about the historical context of railroads over the world and mainly in Brazil is made, from where the routes used for comparisons are based. The controllers’ results are later compared over the best solution cost, the total number of successful solutions, total execution time, and the cost evolution per epoch. A Wilcoxon signed-rank test is executed for each possible pair of controllers in order to determine the statistical difference of the resulting data-sets. The obtained results suggests that the RND controller performs better in the evaluated scenarios, having the faster execution time on both scenarios and achieving the best global solution cost in the harder one. The tool also outputs a video presenting the synoptic panel with the entire execution of the simulation, allowing an easy audition and debugging of the solution. It was built using Python in a Docker container so it can run under different platforms and architectures, being hosted on GitHub and available for further public contributions after the registry process. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-05-27T21:14:28Z 2021-05-27T21:14:28Z 2021-03-05 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
SILVA, Fernando Augusto Constantino da. Railway traffic management: simulation and heuristic optimization. 2021. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2021. http://repositorio.utfpr.edu.br/jspui/handle/1/25058 |
| identifier_str_mv |
SILVA, Fernando Augusto Constantino da. Railway traffic management: simulation and heuristic optimization. 2021. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2021. |
| url |
http://repositorio.utfpr.edu.br/jspui/handle/1/25058 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Tecnológica Federal do Paraná Ponta Grossa Brasil Programa de Pós-Graduação em Engenharia Elétrica UTFPR |
| publisher.none.fl_str_mv |
Universidade Tecnológica Federal do Paraná Ponta Grossa Brasil Programa de Pós-Graduação em Engenharia Elétrica UTFPR |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) instname:Universidade Tecnológica Federal do Paraná (UTFPR) instacron:UTFPR |
| instname_str |
Universidade Tecnológica Federal do Paraná (UTFPR) |
| instacron_str |
UTFPR |
| institution |
UTFPR |
| reponame_str |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
| collection |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) |
| repository.name.fl_str_mv |
Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR) |
| repository.mail.fl_str_mv |
riut@utfpr.edu.br || sibi@utfpr.edu.br |
| _version_ |
1850497880298618880 |