Heterogeneous information network to support the bug report resolution process
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2021 |
| Tipo de documento: | Tese |
| Idioma: | eng |
| Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
| Texto Completo: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-02022022-160727/ |
Resumo: | Context. Throughout a softwares lifecycle, numerous documents (e.g., bug reports and source code) are produced by stakeholders. Bug reports (BR) are the primary input documents to support the activities (bug report severity prediction and fixer recommendation) of the bug report resolution (BRR) process. Source code combined with bug reports are resources to support troubleshooting activities. Automation of these activities of the BRR process requires a concern with obtaining a semantically representative representation. Traditionally, Bagof-Word (BoW) represents software documents to support the automatic execution of these activities through machine learning algorithms. Gap. However, little attention has been paid to representations based on heterogeneous information networks (HEN), which allow representing complex networks respecting the relationships between different objects. Contribution. This doctoral thesis contributes to advancing state of the art regarding information representation models to support the automatic execution of activities in the BRR process. It also advances in the investigation of (i) semi-supervised algorithms that use bipartite heterogeneous networks to support the bug report severity prediction, (ii) a method that combines the BoW representation and heterogeneous information networks to support the bug localization activity, and (iii) a holistic approach that reuses a heterogeneous information network to support BRR activities. Results. The results demonstrate that heterogeneous information networks can be a promising alternative to support the automation of the BRR process. Conclusions. An automatic BRR process using a heterogeneous information network in a holistic perspective presented promising results compared with state-of-the-art representations. |
| id |
USP_f4fe64781deadf969a7da18e62eb151f |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-02022022-160727 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
2721 |
| spelling |
Heterogeneous information network to support the bug report resolution processRede de informações heterogênea para apoiar o processo de resolução de relatórios de incidentesAprendizado de máquinaBug report resolution processHeterogeneous information networkMachine learningMineração de documentos de softwareProcesso de resolução de relatórios de incidentesRede de informações heterogêneasSoftware documents miningContext. Throughout a softwares lifecycle, numerous documents (e.g., bug reports and source code) are produced by stakeholders. Bug reports (BR) are the primary input documents to support the activities (bug report severity prediction and fixer recommendation) of the bug report resolution (BRR) process. Source code combined with bug reports are resources to support troubleshooting activities. Automation of these activities of the BRR process requires a concern with obtaining a semantically representative representation. Traditionally, Bagof-Word (BoW) represents software documents to support the automatic execution of these activities through machine learning algorithms. Gap. However, little attention has been paid to representations based on heterogeneous information networks (HEN), which allow representing complex networks respecting the relationships between different objects. Contribution. This doctoral thesis contributes to advancing state of the art regarding information representation models to support the automatic execution of activities in the BRR process. It also advances in the investigation of (i) semi-supervised algorithms that use bipartite heterogeneous networks to support the bug report severity prediction, (ii) a method that combines the BoW representation and heterogeneous information networks to support the bug localization activity, and (iii) a holistic approach that reuses a heterogeneous information network to support BRR activities. Results. The results demonstrate that heterogeneous information networks can be a promising alternative to support the automation of the BRR process. Conclusions. An automatic BRR process using a heterogeneous information network in a holistic perspective presented promising results compared with state-of-the-art representations.Contexto. Ao longo do ciclo de vida de um software, inúmeros documentos (por exemplo, relatórios de incidentes e código fonte) são produzidos por stakeholders. Os relatórios de incidentes (RI) são os principais documentos de insumo para apoiar as atividades (predição da severidade de relatórios de incidentes e recomendação de responsáveis pela correção do software) do processo de resolução de relatórios de incidentes (RRI). Já o código fonte combinado com os relatórios de incidentes são insumos para apoiar atividades de localização de defeitos. A Automação dessas atividades do processo RRI requer uma preocupação em como obter uma representação semanticamente representativa. Tradicionalmente utiliza-se Bag-of-Word (BoW) para representar os documentos de software para apoiar a execução automática dessas atividades por meio de algoritmos de aprendizado de máquina. Lacuna. No entanto, pouca atenção foi dada para representações baseadas em redes de informações heterogêneas (RIH), que permitem representar redes complexas respeitando os relacionamentos entre diferentes objetos. Contribuição. Esta tese de doutorado contribui para o avanço do estado da arte no que se refere aos modelos de representação de informações para apoiar a execução automática de atividades do processo RRI. Também avança na investigação de (i) algoritmos semissupervisionados que utilizam redes heterogêneas bipartidas para apoiar a predição de severidade de RI, (ii) um método que combina a representação BoW e redes de informações heterogêneas para apoiar a atividade de localização de defeitos, e (iii) uma abordagem holística que reutilizar uma rede de informações heterogêneas para apoiar atividades de RRI. Resultados. Os resultados demonstram que redes de informações heterogêneas podem ser uma alternativa promissora para apoiar a automação do processo RRI. Conclusões. Um processo RRI automático numa perspectica holística utilizando rede de informações heterogêneas apresentou resultados promissores ao serem comparados com representações do estado da arte.Biblioteca Digitais de Teses e Dissertações da USPDelamaro, Márcio EduardoBarbosa, Jacson Rodrigues2021-11-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-02022022-160727/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-02-02T18:50:02Zoai:teses.usp.br:tde-02022022-160727Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-02-02T18:50:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Heterogeneous information network to support the bug report resolution process Rede de informações heterogênea para apoiar o processo de resolução de relatórios de incidentes |
| title |
Heterogeneous information network to support the bug report resolution process |
| spellingShingle |
Heterogeneous information network to support the bug report resolution process Barbosa, Jacson Rodrigues Aprendizado de máquina Bug report resolution process Heterogeneous information network Machine learning Mineração de documentos de software Processo de resolução de relatórios de incidentes Rede de informações heterogêneas Software documents mining |
| title_short |
Heterogeneous information network to support the bug report resolution process |
| title_full |
Heterogeneous information network to support the bug report resolution process |
| title_fullStr |
Heterogeneous information network to support the bug report resolution process |
| title_full_unstemmed |
Heterogeneous information network to support the bug report resolution process |
| title_sort |
Heterogeneous information network to support the bug report resolution process |
| author |
Barbosa, Jacson Rodrigues |
| author_facet |
Barbosa, Jacson Rodrigues |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Delamaro, Márcio Eduardo |
| dc.contributor.author.fl_str_mv |
Barbosa, Jacson Rodrigues |
| dc.subject.por.fl_str_mv |
Aprendizado de máquina Bug report resolution process Heterogeneous information network Machine learning Mineração de documentos de software Processo de resolução de relatórios de incidentes Rede de informações heterogêneas Software documents mining |
| topic |
Aprendizado de máquina Bug report resolution process Heterogeneous information network Machine learning Mineração de documentos de software Processo de resolução de relatórios de incidentes Rede de informações heterogêneas Software documents mining |
| description |
Context. Throughout a softwares lifecycle, numerous documents (e.g., bug reports and source code) are produced by stakeholders. Bug reports (BR) are the primary input documents to support the activities (bug report severity prediction and fixer recommendation) of the bug report resolution (BRR) process. Source code combined with bug reports are resources to support troubleshooting activities. Automation of these activities of the BRR process requires a concern with obtaining a semantically representative representation. Traditionally, Bagof-Word (BoW) represents software documents to support the automatic execution of these activities through machine learning algorithms. Gap. However, little attention has been paid to representations based on heterogeneous information networks (HEN), which allow representing complex networks respecting the relationships between different objects. Contribution. This doctoral thesis contributes to advancing state of the art regarding information representation models to support the automatic execution of activities in the BRR process. It also advances in the investigation of (i) semi-supervised algorithms that use bipartite heterogeneous networks to support the bug report severity prediction, (ii) a method that combines the BoW representation and heterogeneous information networks to support the bug localization activity, and (iii) a holistic approach that reuses a heterogeneous information network to support BRR activities. Results. The results demonstrate that heterogeneous information networks can be a promising alternative to support the automation of the BRR process. Conclusions. An automatic BRR process using a heterogeneous information network in a holistic perspective presented promising results compared with state-of-the-art representations. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-11-30 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-02022022-160727/ |
| url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-02022022-160727/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1826318358376611840 |