A Modified Echo State Network Model Using Non-Random Topology
| Main Author: | |
|---|---|
| Publication Date: | 2023 |
| Format: | Doctoral thesis |
| Language: | eng |
| Source: | Biblioteca Digital de Teses e Dissertações da USP |
| Download full: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-12092023-210015/ |
Summary: | Reservoir Computing is a type of recurrent neural networks suitable for temporal/sequential data processing. One of the representative Reservoir Computing models is the Echo State Network (ESN), which maps the input-output patterns through a high dimensional nonlinear projection, called reservoir. In the classic model of ESN, the reservoir is compound of a large number of neurons with random connections, forming a Erdös-Rényi random complex network. In this way, the reservoir maps the input data into a higher dimensional space to overcome the linear inseparable problem by applying a simple linear regression algorithm in the training phase. Inspired by the modular structure of a human brain, we propose new ESNs using non-random typology as reservoir by complex network models and clustering models. The connectivity topology based on complex networks in the reservoir are: random networks, scale-free networks, and small-world networks. To generate the clustered reservoirs, we propose to use the classic data clustering algorithms: K-means, Partitioning Around Medoids, and Ward algorithm to simulate community structures. We also generate the clustered scale-free and small-world networks as reservoirs. The main hypothesis of this approach is that the non-random network structures, especially, the clustered networks as reservoirs can better capture the information of different classes of the training data in such a way that each of a group of network communities may be served to encode a certain class of data. Numerical experiments in signal prediction applications show that the proposed models have an improvement in its performance and lower computational cost compared to the classical ESNs. The utility of our ESN-based methods has been shown by considering the tissue classification on hematoxylin and eosin (H&E) stained histopathological whole slide images (WSI). The proposed models to classify tissue components on WSI provide results that overcome classical and the state-of-the-art techniques. |
| id |
USP_e4e3925ab3262eb3d55e5df279d1f11b |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-12092023-210015 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
2721 |
| spelling |
A Modified Echo State Network Model Using Non-Random TopologyUm Modelo de Redes de Estado de Eco Modificado Usando Topologías Não AleatóriasClusteringClusterizaçãoComputação de reservatórioEcho state networkRecurrent neural networkRedes de estado de ecoRedes neurais recorrentesReservoir computingReservoir Computing is a type of recurrent neural networks suitable for temporal/sequential data processing. One of the representative Reservoir Computing models is the Echo State Network (ESN), which maps the input-output patterns through a high dimensional nonlinear projection, called reservoir. In the classic model of ESN, the reservoir is compound of a large number of neurons with random connections, forming a Erdös-Rényi random complex network. In this way, the reservoir maps the input data into a higher dimensional space to overcome the linear inseparable problem by applying a simple linear regression algorithm in the training phase. Inspired by the modular structure of a human brain, we propose new ESNs using non-random typology as reservoir by complex network models and clustering models. The connectivity topology based on complex networks in the reservoir are: random networks, scale-free networks, and small-world networks. To generate the clustered reservoirs, we propose to use the classic data clustering algorithms: K-means, Partitioning Around Medoids, and Ward algorithm to simulate community structures. We also generate the clustered scale-free and small-world networks as reservoirs. The main hypothesis of this approach is that the non-random network structures, especially, the clustered networks as reservoirs can better capture the information of different classes of the training data in such a way that each of a group of network communities may be served to encode a certain class of data. Numerical experiments in signal prediction applications show that the proposed models have an improvement in its performance and lower computational cost compared to the classical ESNs. The utility of our ESN-based methods has been shown by considering the tissue classification on hematoxylin and eosin (H&E) stained histopathological whole slide images (WSI). The proposed models to classify tissue components on WSI provide results that overcome classical and the state-of-the-art techniques.A computação de reservatório é um tipo de redes neurais recorrentes adequadas para o processamento de dados temporais/sequenciais. Um dos modelos representativos da computação de reservatório é a rede de estado de eco (no inglês Echo State Network, ESN), que mapeia os padrões de entrada-saída através de uma projeção não linear de alta dimensão, denominada reservatório. No modelo clássico de ESN, o reservatório é composto por um grande número de neurónios com ligações aleatórias, formando uma rede complexa aleatória do tipo Erdös-Rényi. Desta forma, o reservatório mapeia os dados de entrada num espaço de dimensão superior para resolver o problema da inseparabilidade linear, aplicando um algoritmo de regressão linear simples na fase de treino. Inspirados na estrutura modular de um cérebro humano, propomos novas ESNs utilizando topologia não aleatória como reservatório por modelos de redes complexas e modelos gerados via agrupamento de dados. A topologia de conetividade baseada em redes complexas no reservatório são: redes aleatórias, redes livre de escala e redes de mundo pequeno. Para gerar os reservatórios com clusters, propomos utilizar os algoritmos clássicos de agrupamento de dados: K-means, Partitioning Around Medoids, e algoritmo de Ward para simular estruturas de comunidades. Também geramos as redes livre de escala e de pequeno mundo agrupadas como reservatórios. A principal hipótese desta abordagem é que as estruturas de rede não aleatórias, especialmente as redes com clusters como reservatórios, podem captar melhor a informação de diferentes classes dos dados de treino, de tal forma que um grupo de comunidades da rede pode servir para codificar uma determinada classe de dados. Simulações numéricas em aplicações de previsão de sinais mostram que os modelos propostos apresentam uma melhoria no seu desempenho e um custo computacional mais baixo em comparação com as ESN clássicas. A utilidade dos nossos métodos baseados em ESNs foi demonstrada considerando a classificação de tecidos em imagens histopatológicas de lâminas inteiras (WSI) coradas com hematoxilina e eosina (H&E). Os modelos propostos para classificar componentes de tecido em WSI fornecem resultados que superam as técnicas clássicas e as do estado da arte.Biblioteca Digitais de Teses e Dissertações da USPLiang, ZhaoSilva, Israel Tojal daArroyo, Diana Carolina Roca2023-07-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-12092023-210015/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-09-13T11:04:02Zoai:teses.usp.br:tde-12092023-210015Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-09-13T11:04:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
A Modified Echo State Network Model Using Non-Random Topology Um Modelo de Redes de Estado de Eco Modificado Usando Topologías Não Aleatórias |
| title |
A Modified Echo State Network Model Using Non-Random Topology |
| spellingShingle |
A Modified Echo State Network Model Using Non-Random Topology Arroyo, Diana Carolina Roca Clustering Clusterização Computação de reservatório Echo state network Recurrent neural network Redes de estado de eco Redes neurais recorrentes Reservoir computing |
| title_short |
A Modified Echo State Network Model Using Non-Random Topology |
| title_full |
A Modified Echo State Network Model Using Non-Random Topology |
| title_fullStr |
A Modified Echo State Network Model Using Non-Random Topology |
| title_full_unstemmed |
A Modified Echo State Network Model Using Non-Random Topology |
| title_sort |
A Modified Echo State Network Model Using Non-Random Topology |
| author |
Arroyo, Diana Carolina Roca |
| author_facet |
Arroyo, Diana Carolina Roca |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Liang, Zhao Silva, Israel Tojal da |
| dc.contributor.author.fl_str_mv |
Arroyo, Diana Carolina Roca |
| dc.subject.por.fl_str_mv |
Clustering Clusterização Computação de reservatório Echo state network Recurrent neural network Redes de estado de eco Redes neurais recorrentes Reservoir computing |
| topic |
Clustering Clusterização Computação de reservatório Echo state network Recurrent neural network Redes de estado de eco Redes neurais recorrentes Reservoir computing |
| description |
Reservoir Computing is a type of recurrent neural networks suitable for temporal/sequential data processing. One of the representative Reservoir Computing models is the Echo State Network (ESN), which maps the input-output patterns through a high dimensional nonlinear projection, called reservoir. In the classic model of ESN, the reservoir is compound of a large number of neurons with random connections, forming a Erdös-Rényi random complex network. In this way, the reservoir maps the input data into a higher dimensional space to overcome the linear inseparable problem by applying a simple linear regression algorithm in the training phase. Inspired by the modular structure of a human brain, we propose new ESNs using non-random typology as reservoir by complex network models and clustering models. The connectivity topology based on complex networks in the reservoir are: random networks, scale-free networks, and small-world networks. To generate the clustered reservoirs, we propose to use the classic data clustering algorithms: K-means, Partitioning Around Medoids, and Ward algorithm to simulate community structures. We also generate the clustered scale-free and small-world networks as reservoirs. The main hypothesis of this approach is that the non-random network structures, especially, the clustered networks as reservoirs can better capture the information of different classes of the training data in such a way that each of a group of network communities may be served to encode a certain class of data. Numerical experiments in signal prediction applications show that the proposed models have an improvement in its performance and lower computational cost compared to the classical ESNs. The utility of our ESN-based methods has been shown by considering the tissue classification on hematoxylin and eosin (H&E) stained histopathological whole slide images (WSI). The proposed models to classify tissue components on WSI provide results that overcome classical and the state-of-the-art techniques. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-07-18 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-12092023-210015/ |
| url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-12092023-210015/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1826318669841432576 |