Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Tipo de documento: | Tese |
| Idioma: | eng |
| Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
| Texto Completo: | https://www.teses.usp.br/teses/disponiveis/97/97139/tde-27062025-093621/ |
Resumo: | This PhD thesis had as its general objective the use of ionic liquids as extracting solvents in separation processes, as formers of aqueous two-phase systems and as catalysts for the transesterification reaction; as well as simulating with machine learning models the prediction of fatty acid methyl esters (FAME) using molecular information from ionic liquids. Four main studies were developed. i) the use of alternative solvents to form new biphasic aqueous systems and to be able to study the liquid-liquid equilibrium of the system composed of the ionic liquid 1-butyl-3-methylimidazolium bromide ([BMIM][Br]); 1-butyl3-methylimidazolium chloride ([BMIM][Cl]); and 1-butyl-3-methylimidazolium hydroxide ([BMIM][OH]) + sodium citrate + water at 298.15 K. The experimental data obtained were modeled with the NRTL thermodynamic model. The use of this model generated deviations of less than 2%. These ionic liquids were able to form biphasic aqueous systems in the presence of sodium citrate. ii) the use of ionic liquids in separation processes of the azeotropic mixture n-butyl acetate + n-butanol and to study the phase stability of the system n-butyl acetate + n-butanol + IL ([BMIM][Cl], [EMIM][EtSO4], [EMIM][BF4]) at 298.15 K and 101.3 kPa. The experimental data were modeled and the distribution coefficient and separation factor were determined to study the viability of these ionic liquids as solvents. All the systems studied presented separation values greater than 1, indicating the possibility of being used at an industrial level. iii) to optimize the FAME synthesis process through the ionic liquid tetrabutylammonium L-argininate [N4444][L-arg] used as catalyst. A response surface design was applied through a rotatable composite core design. The influence of the variables (temperature, reaction time, methanol/oil molar ratio, catalyst loading) were studied in the FAME synthesis process. The maximum FAME yield of 95.2% was obtained under the following optimal operating conditions: temperature of 56.7 ºC, reaction time of 89.7 min, molar ratio of methanol and oil of 6.5:1, and 5.5 wt.% catalyst load. The transesterification reaction catalyst demonstrated high catalytic activity in the production of FAME. iv) perform a simulation with the Python programming language in Jupyter Notebook using machine learning models (K-nearest neighbor, Random Forest Regressor, Decision Tree Regressor model, Gradient Boosting Regressor and Multilayer Perceptrons) to predict FAME yields using information on the molecular interaction of ionic liquids obtained through the mathematical thermodynamic model conductor-like screening model for realistic solvation (COSMO-RS). According to statistical criteria such as [coefficient of determination (R2), the mean absolute error (MAE) and the root mean square error (RMSE)], the Gradient Boosting Regressor model was the one that obtained the best statistical performance to predict FAME from ionic liquids with catalytic activity. The COSMO-RS thermodynamic model and machine learning models can be used to predict fatty acid methyl esters with molecular information from ionic liquids. |
| id |
USP_cdaac0118c8a0fa2c1e20a56d64a9400 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-27062025-093621 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
2721 |
| spelling |
Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine LearningLíquidos iônicos: síntese, aplicações experimentais, modelagem termodinâmica e simulação com Machine Learningmachine learningequilíbrio líquido-líquidoFAMEFAMEionic liquidsliquid-liquid equilibriumlíquidos iônicosmachine learningmodelagem termodinâmicathermodynamic modelingtransesterificaçãotransesterificationThis PhD thesis had as its general objective the use of ionic liquids as extracting solvents in separation processes, as formers of aqueous two-phase systems and as catalysts for the transesterification reaction; as well as simulating with machine learning models the prediction of fatty acid methyl esters (FAME) using molecular information from ionic liquids. Four main studies were developed. i) the use of alternative solvents to form new biphasic aqueous systems and to be able to study the liquid-liquid equilibrium of the system composed of the ionic liquid 1-butyl-3-methylimidazolium bromide ([BMIM][Br]); 1-butyl3-methylimidazolium chloride ([BMIM][Cl]); and 1-butyl-3-methylimidazolium hydroxide ([BMIM][OH]) + sodium citrate + water at 298.15 K. The experimental data obtained were modeled with the NRTL thermodynamic model. The use of this model generated deviations of less than 2%. These ionic liquids were able to form biphasic aqueous systems in the presence of sodium citrate. ii) the use of ionic liquids in separation processes of the azeotropic mixture n-butyl acetate + n-butanol and to study the phase stability of the system n-butyl acetate + n-butanol + IL ([BMIM][Cl], [EMIM][EtSO4], [EMIM][BF4]) at 298.15 K and 101.3 kPa. The experimental data were modeled and the distribution coefficient and separation factor were determined to study the viability of these ionic liquids as solvents. All the systems studied presented separation values greater than 1, indicating the possibility of being used at an industrial level. iii) to optimize the FAME synthesis process through the ionic liquid tetrabutylammonium L-argininate [N4444][L-arg] used as catalyst. A response surface design was applied through a rotatable composite core design. The influence of the variables (temperature, reaction time, methanol/oil molar ratio, catalyst loading) were studied in the FAME synthesis process. The maximum FAME yield of 95.2% was obtained under the following optimal operating conditions: temperature of 56.7 ºC, reaction time of 89.7 min, molar ratio of methanol and oil of 6.5:1, and 5.5 wt.% catalyst load. The transesterification reaction catalyst demonstrated high catalytic activity in the production of FAME. iv) perform a simulation with the Python programming language in Jupyter Notebook using machine learning models (K-nearest neighbor, Random Forest Regressor, Decision Tree Regressor model, Gradient Boosting Regressor and Multilayer Perceptrons) to predict FAME yields using information on the molecular interaction of ionic liquids obtained through the mathematical thermodynamic model conductor-like screening model for realistic solvation (COSMO-RS). According to statistical criteria such as [coefficient of determination (R2), the mean absolute error (MAE) and the root mean square error (RMSE)], the Gradient Boosting Regressor model was the one that obtained the best statistical performance to predict FAME from ionic liquids with catalytic activity. The COSMO-RS thermodynamic model and machine learning models can be used to predict fatty acid methyl esters with molecular information from ionic liquids.Esta Tese de doutorado teve como objetivo geral a utilização de líquidos iônicos como solventes extratores em processos de separação, como formadores de sistemas aquosos bifásicos e como catalisadores para a reação de transesterificação; bem como simular com modelos de aprendizado de máquina a predição de ésteres metílicos de ácidos graxos (FAME) usando informações moleculares de líquidos iônicos. Foram desenvolvidos quatro estudos principais. i) a utilização de solventes alternativos para formar novos sistemas aquosos bifásicos e poder estudar o equilíbrio líquido-líquido do sistema composto pelo líquido iônico brometo de 1-butil-3-metilimidazólio ([BMIM][Br]); Cloreto de 1-butil-3metilimidazólio ([BMIM][Cl]); e hidróxido de 1-butil-3-metilimidazólio ([BMIM][OH]) + citrato de sódio + água a 298,15 K. Os dados experimentais obtidos foram modelados com o modelo termodinâmico NRTL. A utilização deste modelo gerou desvios inferiores a 2%. Esses líquidos iônicos foram capazes de formar sistemas aquosos bifásicos na presença de citrato de sódio. ii) a utilização de líquidos iônicos em processos de separação da mistura azeotrópica acetato de n-butila + n-butanol e estudo da estabilidade de fases do sistema acetato de n-butila + n-butanol + IL ([BMIM][Cl], [EMIM][EtSO4], [EMIM][BF4]) a 298,15 K e 101,3 kPa. Os dados experimentais foram modelados e o coeficiente de distribuição e o fator de separação foram determinados para estudar a viabilidade destes líquidos iônicos como solventes. Todos os sistemas estudados apresentaram valores de separação maiores do que 1, indicando a possibilidade de serem utilizados em nível industrial. iii) otimizar o processo de síntese de FAME através do líquido iônico L-argininato de tetrabutilamônio [N4444][L-arg] utilizado como catalisador. Um planejamento de superfície de resposta foi aplicado através de um planejamento central composto rotativo. A influência das variáveis (temperatura, tempo de reação, relação molar metanol/óleo, carga do catalisador) foi estudada no processo de síntese do FAME. O rendimento máximo de FAME de 95,2% foi obtido sob as seguintes condições operacionais ideais: temperatura de 56,7 ºC, tempo de reação de 89,7 min, razão molar de metanol e óleo de 6,5:1 e 5,5% em peso do catalisador. O catalisador para a reação de transesterificação demonstrou alta atividade catalítica na produção de FAME. iv) realização de uma simulação com a linguagem de programação Python no Jupyter Notebook usando modelos de aprendizado de máquina (K-nearest neighbor, Random Forest Regressor, Decision Tree Regressor model, Gradient Boosting Regressor and Multilayer Perceptrons) para prever desempenhos FAME usando informações da interação molecular de líquidos iônicos obtidos através do modelo matemático termodinâmico conductor-like screening model for realistic solvation (COSMO-RS). De acordo com critérios estatísticos como [coeficiente de determinação (R2), erro médio absoluto (MAE) e raiz do erro quadrático médio (RMSE)], o modelo Gradient Boosting Regressor foi o que obteve melhor desempenho estatístico para prever FAME de líquidos iônicos com atividade catalítica. O modelo termodinâmico COSMO-RS e modelos de aprendizado de máquina podem ser usados para prever ésteres metílicos de ácidos graxos com informações moleculares de líquidos iônicos.Biblioteca Digitais de Teses e Dissertações da USPCastillo, Pedro Felipe ArceGuimarães, Daniela Helena PelegrineGarcia, Luis Alberto Gallo2024-12-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/97/97139/tde-27062025-093621/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-06-27T12:49:01Zoai:teses.usp.br:tde-27062025-093621Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-06-27T12:49:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning Líquidos iônicos: síntese, aplicações experimentais, modelagem termodinâmica e simulação com Machine Learning |
| title |
Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning |
| spellingShingle |
Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning Garcia, Luis Alberto Gallo machine learning equilíbrio líquido-líquido FAME FAME ionic liquids liquid-liquid equilibrium líquidos iônicos machine learning modelagem termodinâmica thermodynamic modeling transesterificação transesterification |
| title_short |
Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning |
| title_full |
Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning |
| title_fullStr |
Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning |
| title_full_unstemmed |
Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning |
| title_sort |
Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning |
| author |
Garcia, Luis Alberto Gallo |
| author_facet |
Garcia, Luis Alberto Gallo |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Castillo, Pedro Felipe Arce Guimarães, Daniela Helena Pelegrine |
| dc.contributor.author.fl_str_mv |
Garcia, Luis Alberto Gallo |
| dc.subject.por.fl_str_mv |
machine learning equilíbrio líquido-líquido FAME FAME ionic liquids liquid-liquid equilibrium líquidos iônicos machine learning modelagem termodinâmica thermodynamic modeling transesterificação transesterification |
| topic |
machine learning equilíbrio líquido-líquido FAME FAME ionic liquids liquid-liquid equilibrium líquidos iônicos machine learning modelagem termodinâmica thermodynamic modeling transesterificação transesterification |
| description |
This PhD thesis had as its general objective the use of ionic liquids as extracting solvents in separation processes, as formers of aqueous two-phase systems and as catalysts for the transesterification reaction; as well as simulating with machine learning models the prediction of fatty acid methyl esters (FAME) using molecular information from ionic liquids. Four main studies were developed. i) the use of alternative solvents to form new biphasic aqueous systems and to be able to study the liquid-liquid equilibrium of the system composed of the ionic liquid 1-butyl-3-methylimidazolium bromide ([BMIM][Br]); 1-butyl3-methylimidazolium chloride ([BMIM][Cl]); and 1-butyl-3-methylimidazolium hydroxide ([BMIM][OH]) + sodium citrate + water at 298.15 K. The experimental data obtained were modeled with the NRTL thermodynamic model. The use of this model generated deviations of less than 2%. These ionic liquids were able to form biphasic aqueous systems in the presence of sodium citrate. ii) the use of ionic liquids in separation processes of the azeotropic mixture n-butyl acetate + n-butanol and to study the phase stability of the system n-butyl acetate + n-butanol + IL ([BMIM][Cl], [EMIM][EtSO4], [EMIM][BF4]) at 298.15 K and 101.3 kPa. The experimental data were modeled and the distribution coefficient and separation factor were determined to study the viability of these ionic liquids as solvents. All the systems studied presented separation values greater than 1, indicating the possibility of being used at an industrial level. iii) to optimize the FAME synthesis process through the ionic liquid tetrabutylammonium L-argininate [N4444][L-arg] used as catalyst. A response surface design was applied through a rotatable composite core design. The influence of the variables (temperature, reaction time, methanol/oil molar ratio, catalyst loading) were studied in the FAME synthesis process. The maximum FAME yield of 95.2% was obtained under the following optimal operating conditions: temperature of 56.7 ºC, reaction time of 89.7 min, molar ratio of methanol and oil of 6.5:1, and 5.5 wt.% catalyst load. The transesterification reaction catalyst demonstrated high catalytic activity in the production of FAME. iv) perform a simulation with the Python programming language in Jupyter Notebook using machine learning models (K-nearest neighbor, Random Forest Regressor, Decision Tree Regressor model, Gradient Boosting Regressor and Multilayer Perceptrons) to predict FAME yields using information on the molecular interaction of ionic liquids obtained through the mathematical thermodynamic model conductor-like screening model for realistic solvation (COSMO-RS). According to statistical criteria such as [coefficient of determination (R2), the mean absolute error (MAE) and the root mean square error (RMSE)], the Gradient Boosting Regressor model was the one that obtained the best statistical performance to predict FAME from ionic liquids with catalytic activity. The COSMO-RS thermodynamic model and machine learning models can be used to predict fatty acid methyl esters with molecular information from ionic liquids. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-19 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/97/97139/tde-27062025-093621/ |
| url |
https://www.teses.usp.br/teses/disponiveis/97/97139/tde-27062025-093621/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1844786168514740224 |