Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning

Bibliographic Details
Main Author: Garcia, Luis Alberto Gallo
Publication Date: 2024
Format: Doctoral thesis
Language: eng
Source: Biblioteca Digital de Teses e Dissertações da USP
Download full: https://www.teses.usp.br/teses/disponiveis/97/97139/tde-27062025-093621/
Summary: This PhD thesis had as its general objective the use of ionic liquids as extracting solvents in separation processes, as formers of aqueous two-phase systems and as catalysts for the transesterification reaction; as well as simulating with machine learning models the prediction of fatty acid methyl esters (FAME) using molecular information from ionic liquids. Four main studies were developed. i) the use of alternative solvents to form new biphasic aqueous systems and to be able to study the liquid-liquid equilibrium of the system composed of the ionic liquid 1-butyl-3-methylimidazolium bromide ([BMIM][Br]); 1-butyl3-methylimidazolium chloride ([BMIM][Cl]); and 1-butyl-3-methylimidazolium hydroxide ([BMIM][OH]) + sodium citrate + water at 298.15 K. The experimental data obtained were modeled with the NRTL thermodynamic model. The use of this model generated deviations of less than 2%. These ionic liquids were able to form biphasic aqueous systems in the presence of sodium citrate. ii) the use of ionic liquids in separation processes of the azeotropic mixture n-butyl acetate + n-butanol and to study the phase stability of the system n-butyl acetate + n-butanol + IL ([BMIM][Cl], [EMIM][EtSO4], [EMIM][BF4]) at 298.15 K and 101.3 kPa. The experimental data were modeled and the distribution coefficient and separation factor were determined to study the viability of these ionic liquids as solvents. All the systems studied presented separation values greater than 1, indicating the possibility of being used at an industrial level. iii) to optimize the FAME synthesis process through the ionic liquid tetrabutylammonium L-argininate [N4444][L-arg] used as catalyst. A response surface design was applied through a rotatable composite core design. The influence of the variables (temperature, reaction time, methanol/oil molar ratio, catalyst loading) were studied in the FAME synthesis process. The maximum FAME yield of 95.2% was obtained under the following optimal operating conditions: temperature of 56.7 ºC, reaction time of 89.7 min, molar ratio of methanol and oil of 6.5:1, and 5.5 wt.% catalyst load. The transesterification reaction catalyst demonstrated high catalytic activity in the production of FAME. iv) perform a simulation with the Python programming language in Jupyter Notebook using machine learning models (K-nearest neighbor, Random Forest Regressor, Decision Tree Regressor model, Gradient Boosting Regressor and Multilayer Perceptrons) to predict FAME yields using information on the molecular interaction of ionic liquids obtained through the mathematical thermodynamic model conductor-like screening model for realistic solvation (COSMO-RS). According to statistical criteria such as [coefficient of determination (R2), the mean absolute error (MAE) and the root mean square error (RMSE)], the Gradient Boosting Regressor model was the one that obtained the best statistical performance to predict FAME from ionic liquids with catalytic activity. The COSMO-RS thermodynamic model and machine learning models can be used to predict fatty acid methyl esters with molecular information from ionic liquids.
id USP_cdaac0118c8a0fa2c1e20a56d64a9400
oai_identifier_str oai:teses.usp.br:tde-27062025-093621
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine LearningLíquidos iônicos: síntese, aplicações experimentais, modelagem termodinâmica e simulação com Machine Learningmachine learningequilíbrio líquido-líquidoFAMEFAMEionic liquidsliquid-liquid equilibriumlíquidos iônicosmachine learningmodelagem termodinâmicathermodynamic modelingtransesterificaçãotransesterificationThis PhD thesis had as its general objective the use of ionic liquids as extracting solvents in separation processes, as formers of aqueous two-phase systems and as catalysts for the transesterification reaction; as well as simulating with machine learning models the prediction of fatty acid methyl esters (FAME) using molecular information from ionic liquids. Four main studies were developed. i) the use of alternative solvents to form new biphasic aqueous systems and to be able to study the liquid-liquid equilibrium of the system composed of the ionic liquid 1-butyl-3-methylimidazolium bromide ([BMIM][Br]); 1-butyl3-methylimidazolium chloride ([BMIM][Cl]); and 1-butyl-3-methylimidazolium hydroxide ([BMIM][OH]) + sodium citrate + water at 298.15 K. The experimental data obtained were modeled with the NRTL thermodynamic model. The use of this model generated deviations of less than 2%. These ionic liquids were able to form biphasic aqueous systems in the presence of sodium citrate. ii) the use of ionic liquids in separation processes of the azeotropic mixture n-butyl acetate + n-butanol and to study the phase stability of the system n-butyl acetate + n-butanol + IL ([BMIM][Cl], [EMIM][EtSO4], [EMIM][BF4]) at 298.15 K and 101.3 kPa. The experimental data were modeled and the distribution coefficient and separation factor were determined to study the viability of these ionic liquids as solvents. All the systems studied presented separation values greater than 1, indicating the possibility of being used at an industrial level. iii) to optimize the FAME synthesis process through the ionic liquid tetrabutylammonium L-argininate [N4444][L-arg] used as catalyst. A response surface design was applied through a rotatable composite core design. The influence of the variables (temperature, reaction time, methanol/oil molar ratio, catalyst loading) were studied in the FAME synthesis process. The maximum FAME yield of 95.2% was obtained under the following optimal operating conditions: temperature of 56.7 ºC, reaction time of 89.7 min, molar ratio of methanol and oil of 6.5:1, and 5.5 wt.% catalyst load. The transesterification reaction catalyst demonstrated high catalytic activity in the production of FAME. iv) perform a simulation with the Python programming language in Jupyter Notebook using machine learning models (K-nearest neighbor, Random Forest Regressor, Decision Tree Regressor model, Gradient Boosting Regressor and Multilayer Perceptrons) to predict FAME yields using information on the molecular interaction of ionic liquids obtained through the mathematical thermodynamic model conductor-like screening model for realistic solvation (COSMO-RS). According to statistical criteria such as [coefficient of determination (R2), the mean absolute error (MAE) and the root mean square error (RMSE)], the Gradient Boosting Regressor model was the one that obtained the best statistical performance to predict FAME from ionic liquids with catalytic activity. The COSMO-RS thermodynamic model and machine learning models can be used to predict fatty acid methyl esters with molecular information from ionic liquids.Esta Tese de doutorado teve como objetivo geral a utilização de líquidos iônicos como solventes extratores em processos de separação, como formadores de sistemas aquosos bifásicos e como catalisadores para a reação de transesterificação; bem como simular com modelos de aprendizado de máquina a predição de ésteres metílicos de ácidos graxos (FAME) usando informações moleculares de líquidos iônicos. Foram desenvolvidos quatro estudos principais. i) a utilização de solventes alternativos para formar novos sistemas aquosos bifásicos e poder estudar o equilíbrio líquido-líquido do sistema composto pelo líquido iônico brometo de 1-butil-3-metilimidazólio ([BMIM][Br]); Cloreto de 1-butil-3metilimidazólio ([BMIM][Cl]); e hidróxido de 1-butil-3-metilimidazólio ([BMIM][OH]) + citrato de sódio + água a 298,15 K. Os dados experimentais obtidos foram modelados com o modelo termodinâmico NRTL. A utilização deste modelo gerou desvios inferiores a 2%. Esses líquidos iônicos foram capazes de formar sistemas aquosos bifásicos na presença de citrato de sódio. ii) a utilização de líquidos iônicos em processos de separação da mistura azeotrópica acetato de n-butila + n-butanol e estudo da estabilidade de fases do sistema acetato de n-butila + n-butanol + IL ([BMIM][Cl], [EMIM][EtSO4], [EMIM][BF4]) a 298,15 K e 101,3 kPa. Os dados experimentais foram modelados e o coeficiente de distribuição e o fator de separação foram determinados para estudar a viabilidade destes líquidos iônicos como solventes. Todos os sistemas estudados apresentaram valores de separação maiores do que 1, indicando a possibilidade de serem utilizados em nível industrial. iii) otimizar o processo de síntese de FAME através do líquido iônico L-argininato de tetrabutilamônio [N4444][L-arg] utilizado como catalisador. Um planejamento de superfície de resposta foi aplicado através de um planejamento central composto rotativo. A influência das variáveis (temperatura, tempo de reação, relação molar metanol/óleo, carga do catalisador) foi estudada no processo de síntese do FAME. O rendimento máximo de FAME de 95,2% foi obtido sob as seguintes condições operacionais ideais: temperatura de 56,7 ºC, tempo de reação de 89,7 min, razão molar de metanol e óleo de 6,5:1 e 5,5% em peso do catalisador. O catalisador para a reação de transesterificação demonstrou alta atividade catalítica na produção de FAME. iv) realização de uma simulação com a linguagem de programação Python no Jupyter Notebook usando modelos de aprendizado de máquina (K-nearest neighbor, Random Forest Regressor, Decision Tree Regressor model, Gradient Boosting Regressor and Multilayer Perceptrons) para prever desempenhos FAME usando informações da interação molecular de líquidos iônicos obtidos através do modelo matemático termodinâmico conductor-like screening model for realistic solvation (COSMO-RS). De acordo com critérios estatísticos como [coeficiente de determinação (R2), erro médio absoluto (MAE) e raiz do erro quadrático médio (RMSE)], o modelo Gradient Boosting Regressor foi o que obteve melhor desempenho estatístico para prever FAME de líquidos iônicos com atividade catalítica. O modelo termodinâmico COSMO-RS e modelos de aprendizado de máquina podem ser usados para prever ésteres metílicos de ácidos graxos com informações moleculares de líquidos iônicos.Biblioteca Digitais de Teses e Dissertações da USPCastillo, Pedro Felipe ArceGuimarães, Daniela Helena PelegrineGarcia, Luis Alberto Gallo2024-12-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/97/97139/tde-27062025-093621/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-06-27T12:49:01Zoai:teses.usp.br:tde-27062025-093621Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-06-27T12:49:01Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning
Líquidos iônicos: síntese, aplicações experimentais, modelagem termodinâmica e simulação com Machine Learning
title Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning
spellingShingle Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning
Garcia, Luis Alberto Gallo
machine learning
equilíbrio líquido-líquido
FAME
FAME
ionic liquids
liquid-liquid equilibrium
líquidos iônicos
machine learning
modelagem termodinâmica
thermodynamic modeling
transesterificação
transesterification
title_short Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning
title_full Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning
title_fullStr Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning
title_full_unstemmed Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning
title_sort Ionic liquids: syntheses, experimental applications, thermodynamic modeling and simulation with Machine Learning
author Garcia, Luis Alberto Gallo
author_facet Garcia, Luis Alberto Gallo
author_role author
dc.contributor.none.fl_str_mv Castillo, Pedro Felipe Arce
Guimarães, Daniela Helena Pelegrine
dc.contributor.author.fl_str_mv Garcia, Luis Alberto Gallo
dc.subject.por.fl_str_mv machine learning
equilíbrio líquido-líquido
FAME
FAME
ionic liquids
liquid-liquid equilibrium
líquidos iônicos
machine learning
modelagem termodinâmica
thermodynamic modeling
transesterificação
transesterification
topic machine learning
equilíbrio líquido-líquido
FAME
FAME
ionic liquids
liquid-liquid equilibrium
líquidos iônicos
machine learning
modelagem termodinâmica
thermodynamic modeling
transesterificação
transesterification
description This PhD thesis had as its general objective the use of ionic liquids as extracting solvents in separation processes, as formers of aqueous two-phase systems and as catalysts for the transesterification reaction; as well as simulating with machine learning models the prediction of fatty acid methyl esters (FAME) using molecular information from ionic liquids. Four main studies were developed. i) the use of alternative solvents to form new biphasic aqueous systems and to be able to study the liquid-liquid equilibrium of the system composed of the ionic liquid 1-butyl-3-methylimidazolium bromide ([BMIM][Br]); 1-butyl3-methylimidazolium chloride ([BMIM][Cl]); and 1-butyl-3-methylimidazolium hydroxide ([BMIM][OH]) + sodium citrate + water at 298.15 K. The experimental data obtained were modeled with the NRTL thermodynamic model. The use of this model generated deviations of less than 2%. These ionic liquids were able to form biphasic aqueous systems in the presence of sodium citrate. ii) the use of ionic liquids in separation processes of the azeotropic mixture n-butyl acetate + n-butanol and to study the phase stability of the system n-butyl acetate + n-butanol + IL ([BMIM][Cl], [EMIM][EtSO4], [EMIM][BF4]) at 298.15 K and 101.3 kPa. The experimental data were modeled and the distribution coefficient and separation factor were determined to study the viability of these ionic liquids as solvents. All the systems studied presented separation values greater than 1, indicating the possibility of being used at an industrial level. iii) to optimize the FAME synthesis process through the ionic liquid tetrabutylammonium L-argininate [N4444][L-arg] used as catalyst. A response surface design was applied through a rotatable composite core design. The influence of the variables (temperature, reaction time, methanol/oil molar ratio, catalyst loading) were studied in the FAME synthesis process. The maximum FAME yield of 95.2% was obtained under the following optimal operating conditions: temperature of 56.7 ºC, reaction time of 89.7 min, molar ratio of methanol and oil of 6.5:1, and 5.5 wt.% catalyst load. The transesterification reaction catalyst demonstrated high catalytic activity in the production of FAME. iv) perform a simulation with the Python programming language in Jupyter Notebook using machine learning models (K-nearest neighbor, Random Forest Regressor, Decision Tree Regressor model, Gradient Boosting Regressor and Multilayer Perceptrons) to predict FAME yields using information on the molecular interaction of ionic liquids obtained through the mathematical thermodynamic model conductor-like screening model for realistic solvation (COSMO-RS). According to statistical criteria such as [coefficient of determination (R2), the mean absolute error (MAE) and the root mean square error (RMSE)], the Gradient Boosting Regressor model was the one that obtained the best statistical performance to predict FAME from ionic liquids with catalytic activity. The COSMO-RS thermodynamic model and machine learning models can be used to predict fatty acid methyl esters with molecular information from ionic liquids.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/97/97139/tde-27062025-093621/
url https://www.teses.usp.br/teses/disponiveis/97/97139/tde-27062025-093621/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1844786168514740224