Computational first-principles and experimental characterization of Nb-X-Ti-based (X=Zr, Mo) and Fe-Cr-Ni-based high-entropy alloys

Detalhes bibliográficos
Autor(a) principal: Mazo, João Henrique
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: https://www.teses.usp.br/teses/disponiveis/18/18158/tde-28012025-145301/
Resumo: Two Nb-X-Ti-based (X=Zr, Mo) refractory high-entropy alloys (RHEAs) and a Fe-Cr-Ni-based high-entropy stainless steel (HESS) were computationally modeled and characterized using density functional theory first-principles calculations, focusing on the characterization of their elastic properties. Novel experimental data were acquired and, combined with previously reported experiments, were utilized to further discuss and assess the quality of the developed and applied theoretical methodology. For each alloy, ten thousand supercells were generated using an in-house Python implementation of the maximum entropy principle. Only the ten highest free volume supercells were sampled for data production, and their results were averaged. The RHEAs were the first alloys to be simulated and were utilized to validate the theoretical methodology, which was then extended to the HESS. For the RHEAs, the structural values of both alloys matched experimental results, and simulations were used to identify the correct B2 structure of the Zr alloy. Furthermore, the values and trend of changes in their polycrystalline elastic properties when substituting Zr with Mo were correctly predicted by simulations. For the HESS, the simulated structural properties were successfully obtained. However, the theoretical elastic properties showed significant deviation from experimental results, indicating room for improvement in the sampling methodology and suggesting that accurately representing spins in the lattice may considerably affect the elastic properties of the alloy, necessitating further attention. A comparison of the average elastic modulus E and Poisson\'s ratio γ values obtained through simulations and experiments overall presented a good match with coherent results for all systems, when compared to the typical accuracy of density functional theory for pure transition metals. This work demonstrates that the maximum entropy model can effectively characterize high-entropy alloys under different approaches and emphasizes the importance of averaging different supercells and developing a sampling method for simulating chemically disordered materials. It also highlights the major contributions from integrating experimental and theoretical approaches to the study and characterization of novel high-entropy alloys.
id USP_c9ae9bc4195be174b521f66d79bec111
oai_identifier_str oai:teses.usp.br:tde-28012025-145301
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Computational first-principles and experimental characterization of Nb-X-Ti-based (X=Zr, Mo) and Fe-Cr-Ni-based high-entropy alloysCaracterização computacional de primeiros princípios e experimental de ligas de alta entropia baseadas em Nb-X-Ti (X=Zr, Mo) e Fe-Cr-Nidensity functional theoryelastic propertieshigh-entropy alloysligas de alta entropiamaximum entropy modelmetaismetalsmodelo de máxima entropiapropriedades elásticasteoria do funcional da densidadeTwo Nb-X-Ti-based (X=Zr, Mo) refractory high-entropy alloys (RHEAs) and a Fe-Cr-Ni-based high-entropy stainless steel (HESS) were computationally modeled and characterized using density functional theory first-principles calculations, focusing on the characterization of their elastic properties. Novel experimental data were acquired and, combined with previously reported experiments, were utilized to further discuss and assess the quality of the developed and applied theoretical methodology. For each alloy, ten thousand supercells were generated using an in-house Python implementation of the maximum entropy principle. Only the ten highest free volume supercells were sampled for data production, and their results were averaged. The RHEAs were the first alloys to be simulated and were utilized to validate the theoretical methodology, which was then extended to the HESS. For the RHEAs, the structural values of both alloys matched experimental results, and simulations were used to identify the correct B2 structure of the Zr alloy. Furthermore, the values and trend of changes in their polycrystalline elastic properties when substituting Zr with Mo were correctly predicted by simulations. For the HESS, the simulated structural properties were successfully obtained. However, the theoretical elastic properties showed significant deviation from experimental results, indicating room for improvement in the sampling methodology and suggesting that accurately representing spins in the lattice may considerably affect the elastic properties of the alloy, necessitating further attention. A comparison of the average elastic modulus E and Poisson\'s ratio γ values obtained through simulations and experiments overall presented a good match with coherent results for all systems, when compared to the typical accuracy of density functional theory for pure transition metals. This work demonstrates that the maximum entropy model can effectively characterize high-entropy alloys under different approaches and emphasizes the importance of averaging different supercells and developing a sampling method for simulating chemically disordered materials. It also highlights the major contributions from integrating experimental and theoretical approaches to the study and characterization of novel high-entropy alloys.Duas ligas de alta entropia refratárias (RHEAs) baseadas em Nb-X-Ti (X=Zr, Mo) e um aço inoxidável de alta entropia (HESS) baseado em Fe-Cr-Ni foram modelados e caracterizados computacionalmente por meio de cálculos de primeiros princípios da teoria do funcional da densidade, com foco na caracterização de suas propriedades elásticas. Novos dados experimentais foram adquiridos e, em conjunto com experimentos já reportados, foram utilizados para ampliar a discussão e verificar de forma profunda a qualidade da metodologia teórica desenvolvida e aplicada. Para cada liga, dez mil supercélulas foram geradas utilizando uma implementação própria em Python baseada no princípio da máxima entropia, de onde somente as dez supercélulas com maior volume livre foram amostradas para a produção de dados, que foram usados para calcular a média. As RHEAs foram as primeiras ligas a serem simuladas e foram utilizadas para validar a metodologia teórica, que então foi estendida para a HESS. Para as RHEAs, os valores estruturais obtidos para ambas as ligas correspondem bem aos valores experimentais e as simulações foram usadas como um meio de identificar a estrutura correta B2 da liga contendo Zr. Além disso, os valores e a tendência de mudança nas propriedades elásticas policristalinas, quando é feita a substituição de Zr por Mo, foram corretamente previstos pelas simulações. Para a HESS, as propriedades estruturais obtidas também estão em concordância com o experimento. Entretanto, as propriedades elásticas exibiram um maior desvio, revelando a existência de possibilidades de melhoria no método de amostragem e que a correta representação dos spins na rede simulada precisam de maior atenção, já que podem afetar consideravelmente as propriedades elásticas de uma liga. A comparação dos valores médios do módulo de elasticidade E e da razão de Poisson γ, obtidos por meio de simulações e por meio dos experimentos, mostra que diferenças aceitáveis entre os valores foram obtidas para todos os sistemas, principalmente quando comparadas à precisão típica da teoria do funcional da densidade aplicada a metais de transição. O presente trabalho mostra que é possível caracterizar computacional ligas de alta entropia por diferentes métodos utilizando o modelo de máxima entropia e enfatiza a importância de calcular a média de diferentes supercélulas e desenvolver um método de amostragem para simular de forma efetiva materiais quimicamente desordenados, também trazendo à luz as grandes contribuições advindas da integração entre abordagens teóricas e experimentais para o estudo e caracterização de novas ligas de alta entropia.Biblioteca Digitais de Teses e Dissertações da USPOliveira, Marcelo Falcão deSilva, Juarez Lopes Ferreira daMazo, João Henrique2024-12-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18158/tde-28012025-145301/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPReter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.info:eu-repo/semantics/openAccesseng2025-02-10T14:00:02Zoai:teses.usp.br:tde-28012025-145301Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-02-10T14:00:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Computational first-principles and experimental characterization of Nb-X-Ti-based (X=Zr, Mo) and Fe-Cr-Ni-based high-entropy alloys
Caracterização computacional de primeiros princípios e experimental de ligas de alta entropia baseadas em Nb-X-Ti (X=Zr, Mo) e Fe-Cr-Ni
title Computational first-principles and experimental characterization of Nb-X-Ti-based (X=Zr, Mo) and Fe-Cr-Ni-based high-entropy alloys
spellingShingle Computational first-principles and experimental characterization of Nb-X-Ti-based (X=Zr, Mo) and Fe-Cr-Ni-based high-entropy alloys
Mazo, João Henrique
density functional theory
elastic properties
high-entropy alloys
ligas de alta entropia
maximum entropy model
metais
metals
modelo de máxima entropia
propriedades elásticas
teoria do funcional da densidade
title_short Computational first-principles and experimental characterization of Nb-X-Ti-based (X=Zr, Mo) and Fe-Cr-Ni-based high-entropy alloys
title_full Computational first-principles and experimental characterization of Nb-X-Ti-based (X=Zr, Mo) and Fe-Cr-Ni-based high-entropy alloys
title_fullStr Computational first-principles and experimental characterization of Nb-X-Ti-based (X=Zr, Mo) and Fe-Cr-Ni-based high-entropy alloys
title_full_unstemmed Computational first-principles and experimental characterization of Nb-X-Ti-based (X=Zr, Mo) and Fe-Cr-Ni-based high-entropy alloys
title_sort Computational first-principles and experimental characterization of Nb-X-Ti-based (X=Zr, Mo) and Fe-Cr-Ni-based high-entropy alloys
author Mazo, João Henrique
author_facet Mazo, João Henrique
author_role author
dc.contributor.none.fl_str_mv Oliveira, Marcelo Falcão de
Silva, Juarez Lopes Ferreira da
dc.contributor.author.fl_str_mv Mazo, João Henrique
dc.subject.por.fl_str_mv density functional theory
elastic properties
high-entropy alloys
ligas de alta entropia
maximum entropy model
metais
metals
modelo de máxima entropia
propriedades elásticas
teoria do funcional da densidade
topic density functional theory
elastic properties
high-entropy alloys
ligas de alta entropia
maximum entropy model
metais
metals
modelo de máxima entropia
propriedades elásticas
teoria do funcional da densidade
description Two Nb-X-Ti-based (X=Zr, Mo) refractory high-entropy alloys (RHEAs) and a Fe-Cr-Ni-based high-entropy stainless steel (HESS) were computationally modeled and characterized using density functional theory first-principles calculations, focusing on the characterization of their elastic properties. Novel experimental data were acquired and, combined with previously reported experiments, were utilized to further discuss and assess the quality of the developed and applied theoretical methodology. For each alloy, ten thousand supercells were generated using an in-house Python implementation of the maximum entropy principle. Only the ten highest free volume supercells were sampled for data production, and their results were averaged. The RHEAs were the first alloys to be simulated and were utilized to validate the theoretical methodology, which was then extended to the HESS. For the RHEAs, the structural values of both alloys matched experimental results, and simulations were used to identify the correct B2 structure of the Zr alloy. Furthermore, the values and trend of changes in their polycrystalline elastic properties when substituting Zr with Mo were correctly predicted by simulations. For the HESS, the simulated structural properties were successfully obtained. However, the theoretical elastic properties showed significant deviation from experimental results, indicating room for improvement in the sampling methodology and suggesting that accurately representing spins in the lattice may considerably affect the elastic properties of the alloy, necessitating further attention. A comparison of the average elastic modulus E and Poisson\'s ratio γ values obtained through simulations and experiments overall presented a good match with coherent results for all systems, when compared to the typical accuracy of density functional theory for pure transition metals. This work demonstrates that the maximum entropy model can effectively characterize high-entropy alloys under different approaches and emphasizes the importance of averaging different supercells and developing a sampling method for simulating chemically disordered materials. It also highlights the major contributions from integrating experimental and theoretical approaches to the study and characterization of novel high-entropy alloys.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18158/tde-28012025-145301/
url https://www.teses.usp.br/teses/disponiveis/18/18158/tde-28012025-145301/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reter o conteúdo por motivos de patente, publicação e/ou direitos autoriais.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1839839050907779072