Multivariate lifetime models to evaluate long-term survivors in medical studies

Detalhes bibliográficos
Autor(a) principal: Oliveira, Ricardo Puziol de
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Biblioteca Digital de Teses e Dissertações da USP
Texto Completo: http://www.teses.usp.br/teses/disponiveis/17/17139/tde-08012020-110425/
Resumo: Multivariate survival data are presented in the literature in all shapes and sizes. A common situation is the presence of correlated lifetimes when an individual is followed-up for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In many applications involving these type of data, it is common the use of continuous random variable modeling approach. In this direction, the multivariate normal distribution is the most common used since it has friendly properties such as a readily interpretable dependence structure. Moreover, in most of these studies, there is the presence of covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. In this situation, it is needed to assume lifetime regression models. In this way, the well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not enough to explain the complete dependence structure of pair of lifetimes on the covariate vector. In this thesis, it is presented some new multivariate lifetime models assuming cure rate structure based on mixture and non-mixture approaches for the analysis of long-term survivors applied to medical studies. The proposed models could be also useful to study the dependence structure of pair of lifetimes on the covariate vector X. The results emerging from this study reinforce the fact that the search of appropriate multivariate lifetime distributions could be extremely difficult depending on the correlation structure of the lifetime data. However, the proposed methodology could be very useful in the medical lifetime data analysis where the interest is the estimation of the fraction of patients in the studied population who never experience the event of interest. In addition, the identification of important covariates was also easily obtained assuming the proposed models even using non-informative priors for the parameters of the model, under a Bayesian approach. The results could be also extended to other cross-over trials in clinical research; reliability analysis in engineering; risk analysis in economics; among many other areas. For reproducible research, the general framework for the computer codes of the proposed modeling approach is also presented which could be carried out using free R or OpenBugs free softwares.
id USP_c276807c543b6792d30de237efe55312
oai_identifier_str oai:teses.usp.br:tde-08012020-110425
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Multivariate lifetime models to evaluate long-term survivors in medical studiesModelos multivariados para avaliar sobreviventes de longo prazo em estudos médicosAnálise BayesianaBayesian approachCancer studiesContinuous modelsCure rateDependence structureDiscrete modelsEstrutura de dependênciaEstudos de câncerEstudos médicosMedical studiesModelos contínuosModelos discretosModelos multivariadosMultivariate modelsPublic healthRegression modelsRisk factorsSurvival analysisTaxa de curaMultivariate survival data are presented in the literature in all shapes and sizes. A common situation is the presence of correlated lifetimes when an individual is followed-up for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In many applications involving these type of data, it is common the use of continuous random variable modeling approach. In this direction, the multivariate normal distribution is the most common used since it has friendly properties such as a readily interpretable dependence structure. Moreover, in most of these studies, there is the presence of covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. In this situation, it is needed to assume lifetime regression models. In this way, the well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not enough to explain the complete dependence structure of pair of lifetimes on the covariate vector. In this thesis, it is presented some new multivariate lifetime models assuming cure rate structure based on mixture and non-mixture approaches for the analysis of long-term survivors applied to medical studies. The proposed models could be also useful to study the dependence structure of pair of lifetimes on the covariate vector X. The results emerging from this study reinforce the fact that the search of appropriate multivariate lifetime distributions could be extremely difficult depending on the correlation structure of the lifetime data. However, the proposed methodology could be very useful in the medical lifetime data analysis where the interest is the estimation of the fraction of patients in the studied population who never experience the event of interest. In addition, the identification of important covariates was also easily obtained assuming the proposed models even using non-informative priors for the parameters of the model, under a Bayesian approach. The results could be also extended to other cross-over trials in clinical research; reliability analysis in engineering; risk analysis in economics; among many other areas. For reproducible research, the general framework for the computer codes of the proposed modeling approach is also presented which could be carried out using free R or OpenBugs free softwares.Dados multivariados de sobrevida são apresentados na literatura em muitas formas e direcionamentos de modelagem. Uma situação comum é a presença de tempos de sobrevida correlacionados quando um indivíduo é acompanhado até a ocorrência de dois ou mais tipos de eventos, ou quando indivíduos distintos têm tempos dependentes para o mesmo tipo de evento ocorrendo várias vezes. Em muitas aplicações envolvendo esses tipos de dados, é comum o uso de uma abordagem de modelagem assumindo variáveis aleatórias contínuas. Nessa direção, a distribuição normal multivariada é a mais comumente utilizada uma vez que possui propriedades amigáveis como uma estrutura de dependência prontamente interpretável. Além disso, na maioria desses estudos, há a presença de covariáveis, como tratamentos, indicadores de grupos, características individuais ou condições ambientais, cuja relação com o tempo de vida é de interesse. Nessa situação, é necessário assumir modelos de regressão de longa duração. Dessa forma, o conhecido modelo de riscos proporcionais de Cox e suas variações, utilizando funções de risco marginais usadas para a análise de dados de sobrevida multivariada como observado na literatura, não são suficientes para explicar a estrutura de dependência completa do par de tempos de vida no vetor das covariáveis. Nesta tese, são apresentados alguns novos modelos multivariados de longa duração assumindo uma estrutura de taxa de cura baseada em abordagens de modelos de misturas e não-misturas para a análise de sobreviventes de longo prazo aplicados a dados de estudos médicos. Os modelos propostos também podem ser úteis para estudar a estrutura de dependência do par de tempos de vidas no vetor de covariáveis X. Os resultados que emergiram deste estudo reforçam o fato de que a busca de distribuições multivariadas apropriadas podem ser extremamente difíceis, dependendo da estrutura de correlação dos dados de sobrevida. No entanto, a metodologia proposta poderia ser muito útil na análise dos dados de sobrevida médicos onde o interesse é a estimativa da fração de pacientes na população estudada que nunca experimentaram o evento de interesse. Além disso, a identificação de covariáveis importantes também foi facilmente obtida, assumindo os modelos propostos, mesmo usando distribuições a priori não informativas para os parâmetros do modelo, sob uma abordagem Bayesiana. Os resultados também poderiam ser estendidos a outros tipos de ensaios clínicos; análise de confiabilidade em engenharia; análise de risco em economia; entre muitas outras áreas. Para a pesquisa reprodutível, também é apresentada a estrutura geral para os códigos de computador da abordagem de modelagem proposta que pode ser realizada usando softwares livres R ou OpenBugs.Biblioteca Digitais de Teses e Dissertações da USPAchcar, Jorge AlbertoOliveira, Ricardo Puziol de2019-09-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/17/17139/tde-08012020-110425/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-02T23:01:02Zoai:teses.usp.br:tde-08012020-110425Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-02T23:01:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Multivariate lifetime models to evaluate long-term survivors in medical studies
Modelos multivariados para avaliar sobreviventes de longo prazo em estudos médicos
title Multivariate lifetime models to evaluate long-term survivors in medical studies
spellingShingle Multivariate lifetime models to evaluate long-term survivors in medical studies
Oliveira, Ricardo Puziol de
Análise Bayesiana
Bayesian approach
Cancer studies
Continuous models
Cure rate
Dependence structure
Discrete models
Estrutura de dependência
Estudos de câncer
Estudos médicos
Medical studies
Modelos contínuos
Modelos discretos
Modelos multivariados
Multivariate models
Public health
Regression models
Risk factors
Survival analysis
Taxa de cura
title_short Multivariate lifetime models to evaluate long-term survivors in medical studies
title_full Multivariate lifetime models to evaluate long-term survivors in medical studies
title_fullStr Multivariate lifetime models to evaluate long-term survivors in medical studies
title_full_unstemmed Multivariate lifetime models to evaluate long-term survivors in medical studies
title_sort Multivariate lifetime models to evaluate long-term survivors in medical studies
author Oliveira, Ricardo Puziol de
author_facet Oliveira, Ricardo Puziol de
author_role author
dc.contributor.none.fl_str_mv Achcar, Jorge Alberto
dc.contributor.author.fl_str_mv Oliveira, Ricardo Puziol de
dc.subject.por.fl_str_mv Análise Bayesiana
Bayesian approach
Cancer studies
Continuous models
Cure rate
Dependence structure
Discrete models
Estrutura de dependência
Estudos de câncer
Estudos médicos
Medical studies
Modelos contínuos
Modelos discretos
Modelos multivariados
Multivariate models
Public health
Regression models
Risk factors
Survival analysis
Taxa de cura
topic Análise Bayesiana
Bayesian approach
Cancer studies
Continuous models
Cure rate
Dependence structure
Discrete models
Estrutura de dependência
Estudos de câncer
Estudos médicos
Medical studies
Modelos contínuos
Modelos discretos
Modelos multivariados
Multivariate models
Public health
Regression models
Risk factors
Survival analysis
Taxa de cura
description Multivariate survival data are presented in the literature in all shapes and sizes. A common situation is the presence of correlated lifetimes when an individual is followed-up for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In many applications involving these type of data, it is common the use of continuous random variable modeling approach. In this direction, the multivariate normal distribution is the most common used since it has friendly properties such as a readily interpretable dependence structure. Moreover, in most of these studies, there is the presence of covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. In this situation, it is needed to assume lifetime regression models. In this way, the well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not enough to explain the complete dependence structure of pair of lifetimes on the covariate vector. In this thesis, it is presented some new multivariate lifetime models assuming cure rate structure based on mixture and non-mixture approaches for the analysis of long-term survivors applied to medical studies. The proposed models could be also useful to study the dependence structure of pair of lifetimes on the covariate vector X. The results emerging from this study reinforce the fact that the search of appropriate multivariate lifetime distributions could be extremely difficult depending on the correlation structure of the lifetime data. However, the proposed methodology could be very useful in the medical lifetime data analysis where the interest is the estimation of the fraction of patients in the studied population who never experience the event of interest. In addition, the identification of important covariates was also easily obtained assuming the proposed models even using non-informative priors for the parameters of the model, under a Bayesian approach. The results could be also extended to other cross-over trials in clinical research; reliability analysis in engineering; risk analysis in economics; among many other areas. For reproducible research, the general framework for the computer codes of the proposed modeling approach is also presented which could be carried out using free R or OpenBugs free softwares.
publishDate 2019
dc.date.none.fl_str_mv 2019-09-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/17/17139/tde-08012020-110425/
url http://www.teses.usp.br/teses/disponiveis/17/17139/tde-08012020-110425/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1826318543581347840