Instability analysis of compressible flows over open cavities by a Jacobian-free numerical method

Bibliographic Details
Main Author: Mathias, Marlon Sproesser
Publication Date: 2017
Format: Master thesis
Language: eng
Source: Biblioteca Digital de Teses e Dissertações da USP
Download full: https://www.teses.usp.br/teses/disponiveis/18/18148/tde-19062020-182310/
Summary: The influence of the Mach number and the boundary layer thickness over the stability of Rossiter-like modes in a subsonic compressible flow over an open rectangular cavity is studied. This work describes the implementation and use of the relevant computational methods. The most straight-forward way of accessing the stability of a flow is to build the Jacobian matrix of its governing equations and to compute its eigenvalues and eigenvectors. The so called matrix forming methods explicitly compute this matrix and use numerical algorithms to solve its eigenproblem. When the flow grows more complex, the Jacobian matrix may become unfeasibly large. The algorithm implemented here is of the Jacobianfree type, which means that this matrix is not explicitly needed. Therefore, the Arnoldi iteration method is used as all it needs is the ability of multiplying the Jacobian by an arbitrary vector. The algorithm is built in a way that a call to a flow solver is equivalent to this multiplication. The development of this solver is also covered by this work, it is a DNS (Direct Numerical Solver) for the compressible Navier-Stokes equations, which means that no turbulence models are used. High numerical precision is an important requirement as small disturbances, many orders of magnitude smaller than the base flow, must be well resolved. High order spectral like differentiation methods are employed. A validation work is performed for both the DNS and the instability analysis algorithm. Finally, this code becomes a tool to access the effect of a cavity on a boundary-layer flow. Two-dimensional cases are run for various incoming boundary layer thicknesses and Mach numbers. This work focuses on Rossiter modes and the physical phenomena that cause them to be either stable or unstable. Three types of phenomena are checked for their influence in the Rossiter modes: resonance with standing waves; spatial amplification at the mixing layer; and transfer from the flow disturbances to acoustic energy. Finally, the linear stability results are compared to DNS runs, which include non-linear effects. In the current parametric space, it was concluded that the instability at the mixing layer has an important role in selecting the Rossiter modes, while the increased flow to acoustic energy transfer caused by higher Mach numbers influence the mode amplification rate. The resonance with standing waves only plays a small role in this case.
id USP_bbcbdedb547eba45aa44863d63bf7730
oai_identifier_str oai:teses.usp.br:tde-19062020-182310
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str 2721
spelling Instability analysis of compressible flows over open cavities by a Jacobian-free numerical methodAnálise de instabilidade de escoamentos compressíveis sobre uma cavidade aberta por um método numérico sem formação de JacobianoArnoldi iterationCavidade abertaCompressible flowDirect Numerical SolverEscoamento compressívelMétodo de ArnoldiModos de RossiterOpen cavityRossiter modesSimulação numérica diretaThe influence of the Mach number and the boundary layer thickness over the stability of Rossiter-like modes in a subsonic compressible flow over an open rectangular cavity is studied. This work describes the implementation and use of the relevant computational methods. The most straight-forward way of accessing the stability of a flow is to build the Jacobian matrix of its governing equations and to compute its eigenvalues and eigenvectors. The so called matrix forming methods explicitly compute this matrix and use numerical algorithms to solve its eigenproblem. When the flow grows more complex, the Jacobian matrix may become unfeasibly large. The algorithm implemented here is of the Jacobianfree type, which means that this matrix is not explicitly needed. Therefore, the Arnoldi iteration method is used as all it needs is the ability of multiplying the Jacobian by an arbitrary vector. The algorithm is built in a way that a call to a flow solver is equivalent to this multiplication. The development of this solver is also covered by this work, it is a DNS (Direct Numerical Solver) for the compressible Navier-Stokes equations, which means that no turbulence models are used. High numerical precision is an important requirement as small disturbances, many orders of magnitude smaller than the base flow, must be well resolved. High order spectral like differentiation methods are employed. A validation work is performed for both the DNS and the instability analysis algorithm. Finally, this code becomes a tool to access the effect of a cavity on a boundary-layer flow. Two-dimensional cases are run for various incoming boundary layer thicknesses and Mach numbers. This work focuses on Rossiter modes and the physical phenomena that cause them to be either stable or unstable. Three types of phenomena are checked for their influence in the Rossiter modes: resonance with standing waves; spatial amplification at the mixing layer; and transfer from the flow disturbances to acoustic energy. Finally, the linear stability results are compared to DNS runs, which include non-linear effects. In the current parametric space, it was concluded that the instability at the mixing layer has an important role in selecting the Rossiter modes, while the increased flow to acoustic energy transfer caused by higher Mach numbers influence the mode amplification rate. The resonance with standing waves only plays a small role in this case.A influência do número de Mach e da espessura da camada limite sobre a estabilidade de motos tipo Rossiter no escoamento subsônico sobre uma cavidade aberta retangular é estudada. Este trabalho descreve a implementação e o uso dos métodos computacionais relevantes. O método mais direto para se fazer esta análise de estabilidade se resume a encontrar os autovalores e autovetores da matriz Jacobiana das equações governantes do escoamento. Métodos conhecidos como matrix-forming montam essa matriz e usam técnicas numéricas para resolver seu autoproblema. No caso deste escoamento, esta matriz se torna muito grande, a ponto de ser impraticável usá-la, ainda mais considerando os métodos de diferenciação numérica utilizados, que a tornariam uma matriz cheia. Para evitar a formação desta matriz, o método da iteração de Arnoldi é utilizado, uma vez que ele não precisa explicitamente da matriz, mas apenas da capacidade de multiplicar o Jacobiano por vetores arbitrários. O algoritmo é construído de forma que uma chamada do código de simulação do escoamento equivale a esta multiplicação. O desenvolvimento deste código também é mostrado neste trabalho. Se trata de um DNS (Direct Numerical Solver) para as equações compressíveis de Navier-Stokes. Para este uso, o código deve ter uma alta ordem de precisão pois perturbações várias ordens de grandeza menores que o escoamento base devem ser resolvidas com precisão. Métodos de diferenciação espacial com alta resolução espectral são usados para que a malha não precise ser tão grande, reduzindo o custo computacional. Um trabalho de validação é realizado, para se ter a certeza de que todos os parâmetros tanto do DNS quanto do método de análise de instabilidade estão bem escolhidos e para se saber quais os passos a serem tomados caso uma precisão maior seja necessária. Por fim, estes códigos são utilizados para se estudar o efeito de uma cavidade sobre a estabilidade do escoamento sobre uma placa plana. Casos bidimensionais são rodados com várias espessuras de camada limite no bordo de ataque da cavidade e com diversos números de Mach. Este trabalho foca nos modos de Rossiter e nos fenômenos físicos que os tornam estáveis ou instáveis. Três tipos de fenômeno são analisados: ressonância com ondas estacionárias; amplificação espacial na camada de mistura; e transferência das perturbações no escoamento para energia acústica. Por fim, os resultados da instabilidade linear são comparados com dados do DNS, que incluem os efeitos não lineares. No espaço paramétrico atual, a instabilidade na camada de mistura age de forma a selecionar os modos de Rossiter presentes, enquanto a maior transferência de energia do escoamento para o campo acústico causada pelo aumento do número de Mach influencia a taxa de amplificação dos modos. A ressonância com ondas estacionárias tem um papel pequeno neste caso.Biblioteca Digitais de Teses e Dissertações da USPMedeiros, Marcello Augusto Faraco deMathias, Marlon Sproesser2017-11-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/18/18148/tde-19062020-182310/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-07-01T18:17:02Zoai:teses.usp.br:tde-19062020-182310Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-07-01T18:17:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Instability analysis of compressible flows over open cavities by a Jacobian-free numerical method
Análise de instabilidade de escoamentos compressíveis sobre uma cavidade aberta por um método numérico sem formação de Jacobiano
title Instability analysis of compressible flows over open cavities by a Jacobian-free numerical method
spellingShingle Instability analysis of compressible flows over open cavities by a Jacobian-free numerical method
Mathias, Marlon Sproesser
Arnoldi iteration
Cavidade aberta
Compressible flow
Direct Numerical Solver
Escoamento compressível
Método de Arnoldi
Modos de Rossiter
Open cavity
Rossiter modes
Simulação numérica direta
title_short Instability analysis of compressible flows over open cavities by a Jacobian-free numerical method
title_full Instability analysis of compressible flows over open cavities by a Jacobian-free numerical method
title_fullStr Instability analysis of compressible flows over open cavities by a Jacobian-free numerical method
title_full_unstemmed Instability analysis of compressible flows over open cavities by a Jacobian-free numerical method
title_sort Instability analysis of compressible flows over open cavities by a Jacobian-free numerical method
author Mathias, Marlon Sproesser
author_facet Mathias, Marlon Sproesser
author_role author
dc.contributor.none.fl_str_mv Medeiros, Marcello Augusto Faraco de
dc.contributor.author.fl_str_mv Mathias, Marlon Sproesser
dc.subject.por.fl_str_mv Arnoldi iteration
Cavidade aberta
Compressible flow
Direct Numerical Solver
Escoamento compressível
Método de Arnoldi
Modos de Rossiter
Open cavity
Rossiter modes
Simulação numérica direta
topic Arnoldi iteration
Cavidade aberta
Compressible flow
Direct Numerical Solver
Escoamento compressível
Método de Arnoldi
Modos de Rossiter
Open cavity
Rossiter modes
Simulação numérica direta
description The influence of the Mach number and the boundary layer thickness over the stability of Rossiter-like modes in a subsonic compressible flow over an open rectangular cavity is studied. This work describes the implementation and use of the relevant computational methods. The most straight-forward way of accessing the stability of a flow is to build the Jacobian matrix of its governing equations and to compute its eigenvalues and eigenvectors. The so called matrix forming methods explicitly compute this matrix and use numerical algorithms to solve its eigenproblem. When the flow grows more complex, the Jacobian matrix may become unfeasibly large. The algorithm implemented here is of the Jacobianfree type, which means that this matrix is not explicitly needed. Therefore, the Arnoldi iteration method is used as all it needs is the ability of multiplying the Jacobian by an arbitrary vector. The algorithm is built in a way that a call to a flow solver is equivalent to this multiplication. The development of this solver is also covered by this work, it is a DNS (Direct Numerical Solver) for the compressible Navier-Stokes equations, which means that no turbulence models are used. High numerical precision is an important requirement as small disturbances, many orders of magnitude smaller than the base flow, must be well resolved. High order spectral like differentiation methods are employed. A validation work is performed for both the DNS and the instability analysis algorithm. Finally, this code becomes a tool to access the effect of a cavity on a boundary-layer flow. Two-dimensional cases are run for various incoming boundary layer thicknesses and Mach numbers. This work focuses on Rossiter modes and the physical phenomena that cause them to be either stable or unstable. Three types of phenomena are checked for their influence in the Rossiter modes: resonance with standing waves; spatial amplification at the mixing layer; and transfer from the flow disturbances to acoustic energy. Finally, the linear stability results are compared to DNS runs, which include non-linear effects. In the current parametric space, it was concluded that the instability at the mixing layer has an important role in selecting the Rossiter modes, while the increased flow to acoustic energy transfer caused by higher Mach numbers influence the mode amplification rate. The resonance with standing waves only plays a small role in this case.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/18/18148/tde-19062020-182310/
url https://www.teses.usp.br/teses/disponiveis/18/18148/tde-19062020-182310/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1826318845283926016